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Abstract
In this paper, we study geodesics in planes with respect to various distance functions. As
an application, we show that for any interior point of a Euclidean triangle, there exists a
metric on Rn with respect to which this point becomes the barycenter of the triangle. We
also briefly discuss an extension to the case of positive definite matrices.
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1. Introduction
Let A = {A1, A2, . . . , An} and B = {B1, B2, . . . , Bm} be two sets of data points in Rn.

Let C0 be a random data point, and let d be a distance function. In order to decide
whether C0 belongs to A or B, we need to measure the distance from C0 to both A and
B. To do this, we first find the averaging element of each set with respect to the distance
d, and then calculate the distance from C0 to these elements. However, solving two least
squares problems can be computationally expensive.

Such a problem may arise in healthcare science, where A and B represent the sets of
patients and healthy individuals, respectively. It is important to note that the distance d
is given, but it can be modified.

This naturally raises the question: How can we reduce the computational cost?
One approach is to construct a new distance dN such that a selected point in A becomes

the barycenter of A. Subsequently, we only need to solve the least squares problem for
the set B, using the distance dN . This method effectively reduces the computational cost
by half.
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This paper focuses on addressing the question posed above in R2. The organization of
the paper is as follows: In the next section, we explore geodesic curves in the plane. Given
a specific metric and two points in R2, we construct a geodesic connecting these points.
Additionally, for a given increasing monotone function and two points on its graph, we
demonstrate the existence of a metric under which the graph of the function becomes
a geodesic. Using these results, we show that for any interior point within a Euclidean
triangle—that is, a point inside the triangle but not on any of its edges—we can construct
a metric such that this point becomes the barycenter of the triangle. As a consequence,
it follows that any interior point of a data set can be designated as the barycenter of the
set with respect to an appropriately constructed distance function.

2. Geodesic curves in R2

Let d be a metric in R2. A geodesic curve in the metric space (R2, d) is the shortest path
between two points in R2, with “shortest” defined according to the metric d. The shape
of a geodesic depends on the metric of the space. Different metrics may define different
geodesics between the same pair of points.

For example, in Euclidean space (R2, dE), geodesics are straight lines. Namely, given
points A(xA, yA) and B(xB, yB), the geodesic line is given by

(1− λ)A+ λB, λ ∈ [0, 1].

Suppose that the coordinates of A and B are positive. Then, with respect to the hyperbolic
distance

dL(A,B) = dE((log xA, log yA), (log xB, log yB)),
the geodesic curve joining A and B is the graph of the vector-valued function

r(λ) = (x(λ), y(λ)) =
(
x1−λ
A xλB, y

1−λ
A yλB

)
, λ ∈ [0, 1].

In terms of scalar means, geodesics in Euclidean spaces correspond to weighted arith-
metic means, whereas geodesics in log-spaces correspond to weighted geometric means.
From this perspective, if we consider metrics in R2 defined by other scalar means, the
geodesics are fundamentally determined by the specific mean used.

Now let s1, s2 ∈ R \ {0}, and define f(t) = ts1 , h(t) = ts2 . Consider the function

G : (0,∞)× (0,∞)→ R2

(x, y) 7→ G(x, y) = (f(x), h(y)) .

As can be seen, if s1, s2 > 0, then both f(x) and h(y) are strictly increasing. Hence, the
function G is strictly monotonic.

Now, for two points A and B, we define the distance

dG(A,B) = dE(G(A), G(B)).

It is obvious that dG is a metric in the plane. In the following theorem, we construct the
geodesic with respect to the metric dG.

Theorem 2.1. The geodesic joining A and B with respect to dG is given by the following
parametric equations:{

x(λ) = ((1− λ)xs1
A + λxs1

B )1/s1 ,

y(λ) = ((1− λ)ys2
A + λys2

B )1/s2 ,
λ ∈ [0, 1].

Proof. We know that the geodesic connecting G(A) and G(B) with respect to the Eu-
clidean distance dE is

(1− λ)G(A) + λG(B) = ((1− λ)f(xA) + λf(xB), (1− λ)h(yA) + λh(yB)) . (2.1)
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Since f(x) and h(y) are strictly monotonic, the inverse functions f−1(x) = x1/s1 and
h−1(y) = y1/s2 exist. Applying these inverse functions to (2.1), we obtain the geodesic
with respect to dG: {

x(λ) = ((1− λ)xs1
A + λxs1

B )1/s1 ,

y(λ) = ((1− λ)ys2
A + λys2

B )1/s2 ,
λ ∈ [0, 1].

�

The functions f(t) = ts1 and h(t) = ts2 in Theorem 2.1 are bijections on their domains,
in the sense that

(1− λ)f(xA) + λf(xB) ∈ Imf, (1− λ)h(yA) + λh(yB) ∈ Imh, ∀λ ∈ [0, 1].
Thus, given two points A and B, if f(x) and h(x) are bijections (which means the above
inclusion holds for all λ ∈ [0, 1]), then by defining the metric

G : (0,∞)× (0,∞)→ R2

(x, y) 7→ G(x, y) = (f(x), h(y)) ,
the geodesic corresponding to dG is given by:{

x(λ) = f−1 ((1− λ)f(xA) + λf(xB)) ,
y(λ) = h−1 ((1− λ)h(yA) + λh(yB)) ,

λ ∈ [0, 1].

Hence, we have the following theorem.

Theorem 2.2. Given two points A(xA, yA) and B(xB, yB), let f(x) and h(x) be monotone
functions such that

(1− λ)f(xA) + λf(xB) ∈ Imf, (1− λ)h(yA) + λh(yB) ∈ Imh
for all λ ∈ [0, 1]. Then, the geodesic connecting A and B with respect to the distance dG
is given by the parametric equations:{

x(λ) = f−1 ((1− λ)f(xA) + λf(xB)) ,
y(λ) = h−1 ((1− λ)h(yA) + λh(yB)) ,

λ ∈ [0, 1].

The second part of this section focuses on how to make the graph of a monotonic
function a geodesic.

Let f(x) be a monotonic curve between two points A and B, meaning A(xA, f(xA)) =
(xA, yA) and B(xB, f(xB)) = (xB, yB). Let u(x) and v(x) be monotonic functions. The
parametric equations of the curve between two points f(A) = (f(xA), f(yA)) and f(B) =
(f(xB), f(yB)) are given by{

x(λ) = (1− λ)u(xA) + λu(xB),
y(λ) = (1− λ)v(yA) + λv(yB),

λ ∈ [0, 1]. (2.2)

If
(1− λ)u(xA) + λu(xB) ∈ Im u, (1− λ) v(yA) + λ v(yB) ∈ Im v

for all λ ∈ [0, 1], then u(x) and v(y) are bijections onto Im u and Im v, respectively. Thus,
by Theorem 2.2, the geodesic connecting A and B with respect to the distance dG is given
by the parametric equations{

xλ = u−1 ((1− λ)u(xA) + λu(xB)) ,
yλ = v−1 ((1− λ) v(yA) + λ v(yB)) ,

λ ∈ [0, 1].

With respect to the Euclidean distance, the expression (2.2) represents a geodesic con-
necting the two points f(A) and f(B). Applying the inverse functions u−1 and v−1 to
(2.2), we derive the geodesic between the points A and B with respect to dG, which is
precisely given by f(x).
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It is easy to see that there exist two monotonic functions u(x) and v(x) satisfying the
required conditions for all λ ∈ [0, 1]; for instance, u(x) = xs1 and v(x) = xs2 as in Theorem
2.1. Therefore, we can state the condition to make the graph of a monotonic function a
geodesic.

Theorem 2.3. Let A(xA, yA) and B(xB, yB) be two points lying on a monotonic curve
represented by f(x). Consider two monotonic functions u(x) and v(x). If

(1− λ)u(xA) + λu(xB) ∈ Imu, (1− λ)v(yA) + λv(yB) ∈ Imv
for all λ ∈ [0, 1], then f(x) is a geodesic connecting A and B with respect to the distance
dG.

3. Barycenters
Let’s begin this section by defining the concept of the barycenter of a set of points in

the plane.

Definition 3.1. Let d be a distance in Rn. The point X is called the barycenter (or
centroid) of A1, A2, . . . , An if the sum

n∑
i=1

d2(X,Ai)

is minimized.

We exclude the case of the discrete metric, as under this metric, any point in the plane
could serve as the barycenter of the given points, making it an uninteresting scenario.

A distance d satisfies the linearity property if d(A,B) + d(B,C) = d(A,C) for any
collinear points A,B, and C. In R2, generalizing the idea in [1], one can see that the
barycenter of two given points A and B with respect to the distance d is the point C such
that d(A,C) = d(B,C).

In the case of three non-collinear points, we know that with respect to the Euclidean
distance, three medians always meet at one point. This point is called the centroid, or
barycenter, of the given triangle.

In this section, we first show that any interior point of an interval in the plane can be
the barycenter with respect to some distance. As a consequence, we show that any interior
point of a Euclidean triangle can serve as the barycenter of its three vertices with respect
to a certain distance.

3.1. Barycenter of Two Points
In this section, we generalize the known result from the paper [1] to the two-dimensional

case R2

Theorem 3.2. Let A(xA, yA) and B(xB, yB) be two points such that 0 < xA < xB and
0 < yA < yB. Let Ω = {(x, y) |x ∈ (xA, xB), y ∈ (yA, yB)}. Then, for every point C ∈ Ω,
there exists a distance d such that C belongs to a geodesic connecting A and B, and C is
the barycenter of A and B.

Proof. Recall that in [1], it was proved that for any c ∈ (a, b) ⊂ (0,∞), there exists
s0 ∈ R such that

c =
(
as0 + bs0

2

)1/s0

.

When c =
√
ab, we understand this as the limit:

c = lim
s→0

(
as + bs

2

)1/s
.
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Applying this fact to (xA, xB) and (yA, yB), we see that for any C ∈ Ω, there exist
s1, s2 ∈ R such that 

xC =
(
xs1
A + xs1

B

2

)1/s1

,

yC =
(
ys2
A + ys2

B

2

)1/s2

.

By Theorem 2.1, the geodesic that connects A and B with respect to dG is{
x(λ) = ((1− λ)xs1

A + λxs1
B )1/s1 ,

y(λ) = ((1− λ)ys2
A + λys2

B )1/s2 ,
λ ∈ [0, 1].

Let λ = 1
2. We obtain 

x =
(
xs1
A + xs1

B

2

)1/s1

,

y =
(
ys2
A + ys2

B

2

)1/s2

.

Therefore, C lies on the geodesic connecting the two points A and B with respect to
dG.

Finally, we show that C is a midpoint of A and B (in the dG metric). Indeed, we have

dG(A,C) =
√

(xs1
C − x

s1
A )2 + (ys2

C − y
s2
A )2

=

√(
xs1
B − x

s1
A

2

)2
+
(
ys2
B − y

s2
A

2

)2
,

dG(B,C) =
√

(xs1
C − x

s1
B )2 + (ys2

C − y
s2
B )2

=

√(
xs1
A − x

s1
B

2

)2
+
(
ys2
A − y

s2
B

2

)2
.

It is easy to see that
dG(A,C) = dG(B,C),

which means C is a barycenter of A and B. �

3.2. Barycenter of Three Points
We start this section by stating the following lemma.

Lemma 3.3. Given positive numbers a1, a2, a3, then for every c satisfying

min{a1, a2, a3} < c < max{a1, a2, a3},

there exists a number s such that

c =
(
as1 + as2 + as3

3

)1/s
.

Proof. Define the function

g(s) =


(
as1 + as2 + as3

3

)1/s
, s 6= 0,

3
√
a1a2a3, s = 0.
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It is easy to see that g(s) is continuous on R\{0}. The continuity at s = 0 follows from
the fact that

lim
s→0

(
as1 + as2 + as3

3

)1/s
= 3
√
a1a2a3.

Furthermore,

lim
s→−∞

g(s) = min{a1, a2, a3},

lim
s→∞

g(s) = max{a1, a2, a3}.

By the Intermediate Value Theorem, for every

min{a1, a2, a3} < c < max{a1, a2, a3},

there exists a number s such that

c =
(
as1 + as2 + as3

3

)1/s
.

�

This lemma extends a theorem given in [1] in the setting of three positive real numbers.
Building on this, we arrive at the following result, which we find particularly interesting.

Theorem 3.4. Assume A(xA, yA), B(xB, yB), and C(xC , yC) are non-collinear points
with positive coordinates. Then, for every point M(xM , yM ) inside the triangle ABC,
there exists a metric d such that M is the barycenter of A, B, and C.

Proof. By Lemma 3.3, for M(xM , yM ) inside the triangle ABC, there exist s1, s2 ∈ R
such that 

xM =
(
xs1
A + xs1

B + xs1
C

3

)1/s1

,

yM =
(
ys2
A + ys2

B + ys2
C

3

)1/s2

.

By Theorem 2.1, we can describe the geodesics that join A to B, B to C, and A to C
by the following parametric equations:

(AB) :
{
x(λ) = ((1− λ)xs1

A + λxs1
B )1/s1 ,

y(λ) = ((1− λ)ys2
A + λys2

B )1/s2 ,

(BC) :
{
x(λ) = ((1− λ)xs1

B + λxs1
C )1/s1 ,

y(λ) = ((1− λ)ys2
B + λys2

C )1/s2 ,

(AC) :
{
x(λ) = ((1− λ)xs1

A + λxs1
C )1/s1 ,

y(λ) = ((1− λ)ys2
A + λys2

C )1/s2 ,

where λ ∈ [0, 1].
The function dG defined by

dG(A,B) =
√

(xs1
A − x

s1
B )2 + (ys2

A − y
s2
B )2

is a metric.
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Following the same logic as in the two-point case, the three medians intersect at M
when λ = 1

3. Finally, to verify that M satisfies Definition 3.1, consider the function:

f(x, y) =d2
G((x, y), A) + d2

G((x, y), B) + d2
G((x, y), C)

=(xs1 − xs1
A )2 + (ys2 − ys2

A )2

+(xs1 − xs1
B )2 + (ys2 − ys2

B )2

+(xs1 − xs1
C )2 + (ys2 − ys2

C )2.

The gradient of f(x, y) is:
∂f

∂x
= 2s1xs1−1 (3xs1 − xs1

A − x
s1
B − x

s1
C ) ,

∂f

∂y
= 2s2ys2−1 (3ys2 − ys2

A − y
s2
B − y

s2
C ) .

The critical point occurs at 
xs1 = xs1

A + xs1
B + xs1

C

3 ,

ys2 = ys2
A + ys2

B + ys2
C

3 .

Hence, 
x =

(
xs1
A + xs1

B + xs1
C

3

)1/s1

,

y =
(
ys2
A + ys2

B + ys2
C

3

)1/s2

.

Thus, M satisfies Definition 3.1; that is, M is the barycenter of A, B, and C. �

4. Concluding remarks
The arguments used in the previous section can be generalized to Rn by using n numbers

s1, s2, · · · , sn.

Theorem 4.1. Let Ai = (xi1, xi2, · · · , xin) for i = 1, 2, · · · , n. Let x0 = (x01, x02, · · · , x0n)
be such that, for each j,

min{xij} ≤ x0j ≤ max{xij}.
Then, there exist positive numbers s1, s2, · · · , sn such that x0 is the barycenter of Ai with
respect to the following distance:

dS(A,B) =
√

(xA1 − xB1)s1 + (xA2 − xB2)s2 + · · ·+ (xAn − xBn)sn .

Moreover,

x0i =
(
xsi

1i + xsi
2i + · · ·+ xsi

ni

n

)1/si

, i = 1, 2, · · · , n.

In machine learning, quantum information theory, and other applied sciences, positive
definite matrices often serve as data points. Finding the barycenter of a set of positive
definite matrices with respect to a given divergence is a significant yet challenging problem.
Unfortunately, for more than two positive definite matrices, there is no explicit formula
for their barycenter.

In [5], for two positive definite matrices A and B, and for a symmetric Kubo-Ando
matrix mean σ, Virosztek constructed a divergence on the set of positive definite matrices
such that the matrix AσB becomes the barycenter of A and B. The symmetry condition
is crucial in his construction. Unfortunately, without this condition, it remains unclear
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whether such a divergence can exist. The simplest case to consider is the weighted arith-
metic mean (1− λ)A+ λB. If λ 6= 1/2, we do not know how to construct a distance such
that the point (1− λ)A+ λB is the barycenter of A and B.

Finally, given the simplicity of the mathematics presented in this paper, we believe that
constructing a distance such that a given point becomes the barycenter of a data set holds
significant potential for practical applications.
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