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Abstract
Let u, v and p be positive integers such that u and v are relatively prime, p is prime, and
v1/p is an irrational number. Then for each positive integer n, the greatest common divisor
of the integer coefficients in the expansion of

(
u+ v1/p

)n
is the n-th term of a sequence

of positive integers. We show that the greatest common divisor is a nonnegative power of
p as well as finding this greatest common divisor as an explicit function of n.
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1. Introduction
The Problems Section of Mathematics Magazine for February 2022 [2] contained the

following proposal:

Proposal 1.1. For a positive integer n, let an and bn be the unique integers such that
(5 +

√
3)n = an + bn

√
3. Find gcd(an, bn) as a function of n. Solve the analogous problem

when 5 +
√

3 is replaced by 3 +
√

5.

It turns out that in both cases the greatest common divisor is either 1 or a power of
2. It is natural to try to generalize these results. If u and v are positive integers and v is
not a square, then (u +

√
v)n = an + bn

√
v for some integers an and bn. If u and v had

a common factor, it could be factored out of the parentheses; hence if we are interested
in finding gcd(an, bn) we may assume that u and v are relatively prime. We could also
consider the analogous problem for (u+ v1/p)n where p is an odd prime.
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Here are the problems, stated precisely:

Problem 1.2. (1) Let u and v be relatively prime positive integers with v not a square
number. For each positive integer n, let

(u+
√
v)n = an + bn

√
v

for some integers an and bn.
Find gcd(an, bn) as a function of n.

(2) Let p be an odd prime, and let u and v be relatively prime positive integers with
v1/p not an integer. For each positive integer n, let

(u+ v1/p)n = an,0 + an,1v
1/p + an,2v

2/p + · · ·+ an,p−1v
(p−1)/p

for some integers an,0, an,1, . . . , an,p−1.
Find gcd(an,0, an,1, . . . , an,p−1) as a function of n.

In Section 2 of this paper we show that gcd(an, bn) is either 1 or a power of 2, and
that gcd(an,0, an,1, . . . , an,p−1) is either 1 or a power of p. In Section 3 we will find
gcd(an, bn) as an explicit function of n. Finally in Section 4 we give the explicit function
for gcd(an,0, an,1, . . . , an,p−1). We only use elementary methods: divisibility of integers
congruence modulo a prime, and a little matrix algebra.

2. The GCD is either 1 or a Prime Power
Using the notation of Section 1 we have that

an+1 + bn+1
√
v = (u+

√
v)n+1 = (u+

√
v)(u+

√
v)n

= (u+
√
v)(an + bn

√
v) = uan + vbn + (an + ubn)

√
v

which gives the following recurrence relations:
an+1 = uan + vbn

bn+1 = an + ubn
(2.1)

We begin with three lemmas. The first two are straightforward and the third is the key
to the proof of the main result.

Lemma 2.1. Let Dn = gcd(an, bn). Then Dn divides Dn+1 for all n.

Proof. Since Dn divides an and bn it follows from (2.1) that Dn divides an+1 and bn+1,
and hence divides Dn+1. �

Lemma 2.2. gcd(u2 − v, u) = gcd(u2 − v, v) = 1.

Proof. Suppose there is a prime p that divides u2−v and u. Then p divides u2−(u2−v) =
v. But this contradicts the hypothesis that u and v are relatively prime. If there is a prime
p that divides u2 − v and v, then p must divide u2 − v + v = u2, and hence p divides u,
which again is a contradiction. �

Lemma 2.3. For all n, gcd(u2 − v,Dn) = 1 or a power of 2.

Proof. First note that D1 = gcd(u, 1) = 1, so the statement is true for n = 1. Since
(u +

√
v)2 = u2 + v + 2u

√
v, D2 = gcd(u2 + v, 2u). Suppose there is a prime p 6= 2 that

divides u2 + v and 2u. Then p divides u and u2 + v, which means that p must divide
u2 + v − u2 = v. This contradicts the hypothesis that u and v are relatively prime. Thus
2 is the only prime that can divide D2, so the result is true for n = 2.

Assume that the result is true for 1 ≤ i ≤ n for some n ≥ 2, but false for i = n + 1.
Then there is a prime p 6= 2 such that p divides u2 − v and Dn+1, but p does not divide
Dn.
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Writing (2.1) in matrix form gives
(
an+1
bn+1

)
=
(
u v
1 u

)(
an

bn

)
. Since v is not a perfect

square, u2 − v 6= 0. It follows that:(
an

bn

)
=
(
u v
1 u

)−1 (
an+1
bn+1

)
= 1
u2 − v

(
u −v
−1 u

)(
an+1
bn+1

)
which gives

(u2 − v)an = uan+1 − vbn+1

(u2 − v)bn = −an+1 + ubn+1.

Since n ≥ 2, this implies that (u2−v)bn−1 = −an+ubn. Since p divides (u2−v), p divides
(−an + ubn). Furthermore, since p divides Dn+1, p divides bn+1. Since bn+1 = an + ubn,
p divides (an + ubn). Therefore p divides both (an + ubn) − (−an + ubn) = 2an and
(an + ubn) + (−an + ubn) = 2ubn. Since gcd(u2 − v, u) = 1, p does not divide u, and
also p 6= 2. Therefore p divides both an and bn, and hence p divides Dn as well, which
contradicts the hypothesis that Dn = 1 or a power of 2.

�

Now we are ready to prove the first of the two main results of this section.

Theorem 2.1. Let (u+
√
v)n = an +bn

√
v where u, v, an and bn are positive integers with

u and v relatively prime. Then gcd(an, bn) = 1 or a power of 2.

Proof. We saw in the proof of Lemma 2.3 that the statement is true for n = 1 and n = 2.
Suppose it is true for some n ≥ 2. In the proof of Lemma 2.3 we showed that:

(u2 − v)an = uan+1 − vbn+1

(u2 − v)bn = −an+1 + ubn+1.

Suppose that the result is false for n + 1. Then there is a prime p 6= 2 that divides
Dn+1 = gcd(an+1, bn+1). Hence p divides both an+1 and bn+1, and thus p divides (u2−v)an

and (u2 − v)bn. But by Lemma 2.3, p does not divide u2 − v. Therefore p divides an and
bn and therefore p divides Dn, contrary to our hypothesis that the statement is true for
n. The statement of the theorem follows. �

Now we turn to the case of
(
u+ v1/p

)n
where p is an odd prime, u and v are relatively

prime positive integers with v1/p not an integer. Recall that
(u+ v1/p)n = an,0 + an,1v

1/p + an,2v
2/p + · · ·+ an,p−1v

(p−1)/p

for some integers an,0, an,1, . . . , an,p−1. Then

an+1,0 + an+1,1v
1/p + · · · an+1,p−1v

(p−1)/p

= (u+ v1/p)(an,0 + an,1v
1/p + · · ·+ an,p−1v

(p−1)/p).

By equating the coefficients of v0, v1/p, v2/p, . . . , v(p−1)/p we see that
an+1,0 = uan,0 + van,p−1

an+1,1 = an,0 + uan,1

an+1,2 = an,1 + uan,2

...
an+1,p−1 = uan,p−2 + an,p−1

(2.2)

Next we state three lemmas which are analogous to Lemmas 2.1, 2.2 and 2.3. We omit
the proofs of the first two, since they are similar to the proofs of Lemmas 2.1 and 2.2.

Lemma 2.4. Let Dn = gcd(an,0, an,1, . . . , an,p−1). Then Dn divides Dn+1 for all n.
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Lemma 2.5. gcd(up + v, u) = gcd(up + v, v) = 1

Lemma 2.6. For all positive integers n, gcd(up + v,Dn) = 1 or a power of p.

Proof. From the binomial expansion of (u + v1/p)n, we can show that Dn = 1 for 1 ≤
n ≤ p − 1. The binomial expansion together with Lemma 2.5 give us that either Dp = p
or Dp = 1. Hence the statement is true for 1 ≤ n ≤ p.

Assume that the statement is true for some n ≥ p, but false for n+ 1. Then there is a
prime q 6= p such that q divides up + v and Dn+1, but q does not divide Dn.

Since q divides Dn+1, q divides an+1,i for 0 ≤ i ≤ p − 1. It follows from (2.2) that
an,p−2 + uan,p−1 ≡ 0 (mod q), and hence an,p−2 ≡ −uan,p−1 (mod q). Similarly we see
that an,p−3 ≡ −uan,p−2 ≡ u2an,p−1 (mod q). By repeatedly applying (2.2) we see that

an,r ≡ (−1)rup−r−1an,p−1 (mod q) (2.3)

for 0 ≤ r ≤ p− 1.
Since n ≥ p > 1, equation (2.2) implies that

an,0 = uan−1,0 + van−1,p−1

an,1 = an−1,0 + uan−1,1

an,2 = an−1,1 + uan−1,2

...
an,p−1 = an−1,p−2 + uan−1,p−1

(2.4)

Hence
p−1∑
r=0

(−1)ruran,r =(aun−1,0 + van−1,p−1)− u(an−1,0 + uan−1,1)+

u2(an−1,1 + uan−1,2)− · · ·+ up−1(an−1,p−2 + uan−1,p−1)
=(up + v)an−1,p−1.

(2.5)

Since q divides (up + v), we know that q divides
p−1∑
r=0

(−1)ruran,r, and hence

p−1∑
r=0

(−1)ruran,r ≡ 0 (mod q). By (2.3), we see that an,r ≡ (−1)rup−r−1an,p−1 (mod q) for

0 ≤ r ≤ p− 1, so
p−1∑
r=0

(−1)rur(−1)rup−r−1an,p−1 ≡
p−1∑
r=0

up−1an,p−1 (mod q).

This implies that pup−1an,p−1 ≡ 0 (mod q), and that q divides pup−1an−1,p. Since q divides
up + v, Lemma 2.5 implies that q does not divide up. Also q 6= p. Hence q divides an,p−1,
so an,p−1 ≡ 0 (mod q). It follows from (2.3) that an,r ≡ 0 (mod q) for 0 ≤ r ≤ p− 1, and
therefore q divides Dn, contrary to the induction hypothesis. �

Theorem 2.7. Let
(
u+ v1/p

)
= an,0 + an,1v

1/p + an,2v
2/p + · · ·+ an,p−1v

(p−1)/p for some
integers an,0, an,1, . . . , an,p−1, where p is an odd pirme, u and v are relatively prime positive
integers and vp is not an integer. Then either Dn = 1 or Dn is a power of p.

Proof. We showed in the proof of Lemma 2.6 that the statement is true for 1 ≤ n ≤ p.
Assume it is true for some n ≥ p, but false for n + 1. Then there is a prime q 6= p such
that q divides Dn+1 but q does not divide Dn. By Lemma 2.6, q does not divide up + v.
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Let A =



u 0 0 · · · 0 0 v
1 u 0 · · · 0 0 0
0 1 u · · · 0 0 0
...

...
... · · ·

...
...

...
0 · · · 1 u 0
0 · · · 0 1 u


. Then (2.2) can be written in matrix form as



an+1,0
an+1,1
an+1,2

...
an+1,p−2
an+1,p−1


= A



an,0
an,1
an,2
...

an,p−2
an,p−1


. It can be shown using elementary properties of determi-

nants that det(A) = up + v. It follows that A−1 = 1
(up + v)B, where B is a matrix with

integer entries. (See, for instance [3, p.219]).
Hence 

an,0
an,1
an,2
...

an,p−2
an,p−1


= A−1



an+1,0
an+1,1
an+1,2

...
an+1,p−2
an+1,p−2


= 1

(up + v)B



an+1,0
an+1,1
an+1,2

...
an+1,p−2
an+1,p−1


.

Thus for each i, 0 ≤ i ≤ p − 1, (up + v)an,i is equal to a linear combination of
an+1, an+1,1, . . . , an+1,p−1 with integer coefficients. Since q divides Dn+1, q divides each
of an+1,0, an+1,1, . . . , an+1,p−1, and hence q divides (up + v)an,i for all i. But q does not
divide up + v, and so q divides an,i for all i. Therefore q divides Dn, which contradicts our
induction hypothesis. �

3. The Exact GCD for the Square Root Case
Theorem 3.1. Let (u +

√
v)n = an + bn

√
v where u and v are relatively prime positive

integers, v is not a square and an and bn are integers. Let Dn = gcd(an, bn).
(a) If u2 − v is odd, Dn = 1 for all n ≥ 1.
(b) If u2 − v ≡ 2 (mod 4), D2n−1 = 2n−1 and D2n = 2n for all n ≥ 1.
(c) If u2 − v ≡ 4 (mod 8), D3n−2 = 23n−3, D3n−1 = 23n−2, and D3n = 23n for all n ≥ 1.
(d) If u2 − v ≡ 0 (mod 8), Dn = 2n−1 for all n ≥ 1.

Proof. To prove (a) we suppose that u2 − v is odd. We have seen that D1 = 1. Assume
that Dn = 1 for some n, and that Dn+1 > 1. By Theorem 2.1, we know that 2 divides
Dn+1. In the proof of Lemma 2.3 we saw that

(u2 − v)an = uan+1 − vbn+1

(u2 − v)bn = −an+1 + ubn+1.

Since 2 divides Dn+1, 2 divides an+1 and bn+1, and hence 2 must divide both (u2 − v)an

and (u2 − v)bn. Since u2 − v is odd, 2 does not divide it, and thus 2 must divide an and
bn. Therefore 2 divides Dn, which contradicts the induction hypothesis.

For the proofs of (b), (c) and (d), we use the following notation: Let an = Dnαn and
bn = Dnβn. Note that αn and βn cannot both be even. Rewriting equation (2.1) in matrix
form gives us (

an+1
bn+1

)
=
(
u v
1 u

)(
an

bn

)
= Dn

(
u v
1 u

)(
αn

βn

)
(3.1)
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To prove (b), we suppose u2 − v ≡ 2 (mod 4). Then u and v are odd, and u2 ≡ 1
(mod 4). Hence v ≡ 3 (mod 4).

We want to show that D2n−1 = 2n−1 and D2n = 2n. We have seen that D1 = 1. Since
(u+

√
v)2 = u2 + v + 2u

√
v we have that D2 = gcd(u2 + v, 2u) = 2. Hence the statement

is true for n = 1, 2.
Suppose it is true for 1 ≤ i ≤ n for some n ≥ 2. We will show that Dn+2 = 2Dn, from

which the statement of (b) follows by induction. By equation (3.1) we have that(
an+1
bn+1

)
= A

(
an

bn

)
= DnA

(
αn

βn

)

where A =
(
u v
1 u

)
. It follows that

(
an+2
bn+2

)
= DnA

2
(
αn

βn

)
= Dn

(
u2 + v 2uv

2u u2 + v

)(
αn

βn

)
Then we have that

(
an+2
bn+2

)
= 2Dn

A2

2

(
αn

βn

)
= 2Dn


u2 + v

2 uv

u
u2 + v

2

(αn

βn

)

Note that u2 + v ≡ 1 + 3 ≡ 0 (mod 4). Hence u
2 + v

2 is even, and u and uv are both odd.

Let B̄ = A2

2 (mod 2). Then B̄ =
(

0̄ 1̄
1̄ 0̄

)
. This implies that

(
0̄ 1̄
1̄ 0̄

)(
αn

βn

)
=
(
βn

αn

)
6=
(

0̄
0̄

)
(mod 2),

since αn and βn cannot both be even. It follows that the entries of A
2

2

(
αn

βn

)
are not both

even, and hence their greatest common divisor is not even. Therefore Dn+2 = 2Dn thus
proving (b).

To prove (c) we suppose that u2 − v ≡ 4 (mod 8). Both u and v are odd, thus u2 ≡ 1
(mod 8) and v ≡ 5 (mod 8).

Observe that D1 = gcd(u, 1) = 1 and D2 = gcd(u2 + v, 2u). Since u2 + v ≡ 1 + 5 ≡ 6
(mod 8) and u is odd, we have that D2 = 2.

Since (u+
√
v)3 = u3 +3uv+(3u2 +v)

√
v it is the case that D3 = gcd(u3 +3uv, 3u2 +v).

We will show that D3 = 8.
Since u2 ≡ 1 (mod 8) and v ≡ 5 (mod 8), we see that

u3 + 3uv = u(u2 + 3v) ≡ u(1 + 15) ≡ 0 (mod 8),

and
3u2 + v ≡ 3 + 5 ≡ 0 (mod 8).

Hence both u3 + 3uv and 3u2 + v are divisible by 8. If they are both divisible by 16, then
3(u3 + 3uv)− u(3u2 + v) = 8uv is divisible by 16. But this is false since u and v are both
odd. Hence D3 = 8. (Recall that for all n, Dn is a nonnegative power of 2.)

We assume that D3i−2 = 23i−3, D3i−1 = 23i−2 and D3i = 23i for 1 ≤ i ≤ n, and show
that Dn+3 = 23Dn. Then the statement of (c) will follow by induction.(

an+3
bn+3

)
= DnA

3
(
αn

βn

)
= 23Dn

1
8

(
u3 + 3uv 3u2v + v2

3u2 + v u3 + 3uv

)(
αn

βn

)
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Define C̄ = 1
8A

3 (mod 8). Since gcd(u3 + 3uv, 3u2 + v) = 8, u
3 + 3uv

8 and 3u2 + v

8
are not both even. Since also 3(u3 + 3uv) − u(3u2 + v) = 8uv is not divisible by 16,

one of u
3 + 3uv

8 and 3u2 + v

8 is even and the other is odd. Thus either C̄ =
(

1̄ 0̄
0̄ 1̄

)
or

C̄ =
(

0̄ 1̄
1̄ 0̄

)
. Hence C̄

(
αn

βn

)
6=
(

0
0

)
(mod 2), which implies that the entries of A

3

8

(
αn

βn

)
are not both even. Therefore Dn+3 = 23Dn.

For (d), we have that u2−v ≡ 0 (mod 8), which implies that u2 ≡ 1 (mod 8) and v ≡ 1
(mod 8).

We can show that D1 = 1 and D2 = 2. Assume that Di = 2i−1 for 1 ≤ i ≤ n for some
n > 1. By equation (3.1) we see that(

an

bn

)
=
(
u v
1 u

)(
an−1
bn−1

)
= Dn−1

(
u v
1 u

)(
αn−1
βn−1

)
= Dn−1

(
uαn−1 + vβn−1
αn−1 + uβn−1

)
.

Since Dn = 2Dn−1, gcd(uαn−1 + vβn−1, αn−1 + uβn−1) = 2. Since u2 − v ≡ 0 (mod 4)
and u2 ≡ 1 (mod 4), we see that v ≡ 1 (mod 4) It follows that

uαn−1 + vβn−1 ≡ uαn−1 + βn−1 (mod 4)

and
uαn−1 + βn−1 ≡ u(αn−1 + uβn−1) (mod 4).

Therefore
uαn−1 + vβn−1 ≡ u(αn−1 + uβn−1) (mod 4).

Since u is odd and gcd(uαn−1 + vβn−1, αn−1 + uβn−1) = 2, it must be the case that

uαn−1 + vβn−1 ≡ αn−1 + uβn−1 ≡ 2 (mod 4).

Since
(
an+1
bn+1

)
=
(
u v
1 u

)2 (
an

bn

)
, we see that

(
an+1
bn+1

)
= Dn−1

(
u2 + v 2uv

2u u2 + v

)(
αn−1
βn−1

)
= 2Dn−1

(
u2+v

2 uv

u u2+v
2

)(
αn−1
βn−1

)
.

Since u2 + v ≡ 2 (mod 8) and v ≡ 1 (mod 4), we have that

u2 + v

2 ≡ 1 (mod 4),

and (
u2 + v

2

)
αn−1 + uvβn−1 ≡ αn−1 + uβn−1 (mod 4).

Also

uαn−1 +
(
u2 + v

2

)
βn−1 ≡ uαn−1 + βn−1 (mod 4).

Hence each entry in(
u2+v

2 uv

u u2+v
2

)(
αn−1
βn−1

)
=

(u2+v
2

)
αn−1 + uvβn−1

uαn−1 +
(

u2+v
2

)
βn−1


is congruent to 2 (mod 4). Therefore Dn+1 = 22Dn−1 = 2n. The result of (d) follows by
induction.

�
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4. The Exact GCD for an Odd Prime p

Theorem 4.1. Let
(
u+ v1/p

)n
= an,0 +an,1v

1/p +an,2v
2/p + · · ·+an,p−1v

(p−1)/p for some
integers an,0, an,1, . . . , an,p−1, where p is a an odd prime, u and v are relatively prime
positive integers, and v1/p is not an integer. Let Dn = gcd(an,0, an,1, an,2, . . . , an,p−1).
(a) If up + v is not divisible by p, then Dn = 1 for all n ≥ 1.
(b) If up + v = mp where p does not divide m, Dnp+i = pn for all n ≥ 0 and 0 ≤ i ≤ p− i.
(c) If up + v is divisible by p2, then Dn(p−1)+i = pn where n ≥ 0 and 1 ≤ i ≤ p− 1.

Proof. We begin by proving (a). Suppose that up + v is not divisible by p. From the
binomial expansion of

(
u+ v1/p

)n
for 1 ≤ n ≤ p−1 we see that Dn = 1 for 1 ≤ n ≤ p−1.

Suppose that Dn = 1 for some n ≥ p − 1 and Dn+1 > 1. By Theorem 2.7 Dn+1 is equal
to a positive power of p. We saw in Section 2 that

an,0
an,1
an,2
...
...

an,p−2
an,p−1


=



u 0 0 · · · 0 0 v
1 u 0 · · · 0 0 0
0 1 0 · · · 0 0 0
...

...
... · · ·

...
...

...

0
...

... · · · 1 u 0

0
...

... · · · 0 1 u



−1


an+1,0
an+1,1
an+1,2

...

...
an+1,p−2
an+1,p−1


= 1

(up + v)A



an+1,0
an+1,1
an+1,2

...

...
an+1,p−2
an+1,p−1


where A is a p × p matrix with integer values. Hence each of (up + v)an,0, (up +
v)an,1, . . . , (up + v)an,p−1 is a linear combination of an+1,0, an+1,1, . . . an+1,p−1 with in-
teger coefficients. Since p divides Dn+1 and p does not divide up + v, p divides an,0,
an,1, . . . , an,p−1 and hence divides Dn contrary to the induction hypothesis. �

In order to prove part (b) of Theorem 4.1 we will use the following lemma and corollary.
Lemma 4.1.

u 0 0 · · · 0 0 v
1 u 0 · · · 0 0 0
0 1 0 · · · 0 0 0
...

...
... · · ·

...
...

...

0
...

... · · · 1 u 0

0
...

... · · · 0 1 u



n

=



an,0 van,p−1 van,p−2 · · · van,2 van,1
an,1 an,0 van,p−1 · · · van,3 van,2

an,2 an,1 an,0 · · ·
... van,3

...
...

... · · ·
...

...

an,p−2
...

... · · · an,0 van,p−1

an,p−1
...

... · · · an,1 an,0


for all n ≥ 1.
Proof. The result is proved by a straightforward induction argument. �

Corollary 4.2. For all n ≥ 1, (up + v)n is divisble by (Dn)p.
Proof. Equate the determinants in the statement of Lemma 4.1. Recall that

det





u 0 0 · · · 0 0 v
1 u 0 · · · 0 0 0
0 1 u · · · 0 0 0
...

...
... · · ·

...
...

...

0
...

... · · · 1 u 0

0
...

... · · · 0 1 u



n
=


det



u 0 0 · · · 0 0 v
1 u 0 · · · 0 0 0
0 1 u · · · 0 0 0
...

...
... · · ·

...
...

...

0
...

... · · · 1 u 0

0
...

... · · · 0 1 u





n

= (up + v)n.

This implies that (up+v)n is equal to a homogeneous polynomial of degree p in an,0, an,1, . . . , an,p−1.
Since Dn divides each of an,0, an,1, . . . , an,p−1, (Dn)p divides (up + v)n.
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�

Now we continue the proof of Theorem 4.1 proving part (b).

Proof. Suppose up +v = pm for some m not divisible by p. We want to show that Dn = 1
for 1 ≤ n ≤ p− 1 and Dpn+i = p for all n ≥ 1 and 0 ≤ i ≤ p− 1. We saw in the proof of
(a) that Dn = 1 for 1 ≤ i ≤ p − 1. From the binomial expansion for

(
u+ v1/p

)p
we see

that

Dp = gcd
(
up + v,

(
p

1

)
up−1,

(
p

2

)
up−2, . . . ,

(
p

p− 1

)
u

)
= p.

Suppose the result is true for some n ≥ p and some i where 0 ≤ i ≤ p−1. ThenDpn+i = pn.
We will show that Dp(n+1)+i = pn+1, from which the result follows by induction.

ap(n+1)+i,0
ap(n+1)+i,1

...

...

...
ap(n+1)+i,p−1


=



u 0 0 · · · 0 0 v
1 u 0 · · · 0 0 0
0 1 u · · · 0 0 0
...

...
... · · ·

...
...

...

0
...

... · · · 1 u 0

0
...

... · · · 0 1 u



p

apn+i,0
apn+i,1

...

...

...
apn+i,p−1



=



(up + v)
(

p

p− 1

)
uv · · ·

(
p

p− 2

)
u2v

(
p

1

)
up−1v(

p

1

)
up−1 (up + v) · · ·

(
p

p− 3

)
u3v

(
p

p− 2

)
u2v

...
... · · ·

...
...(

p

p− 2

)
u2

(
p

p− 3

)
u3 · · · (up + v)

(
p

p− 1

)
uv(

p

p− 1

)
u

(
p

p− 2

)
u2 · · ·

(
p

1

)
up−1 (up + v)





apn+i,0
apn+i,1

...

...

...

...
apn+i,p−1



Since p divides up + v, every entry in the p× p matrix is divisible by p. It follows that
pDpn+i divides each of ap(n+1)+i,0, ap(n+1)+i,1, . . . ap(n+1)+i,p−1, and hence pDpn+i = pn+1

divides Dp(n+1)+i. Let Dp(n+1)+i = pr. Then r ≥ n+ 1.
By Corollary 4.2, (Dp(n+1)+i)p divides (up + v)p(n+1)+i = pp(n+1)+imp(n+1)+i. Since

Dp(n+1)+i = pr, rp ≤ p(n+ 1) + i. But rp ≥ p(n+ 1), and therefore n+ 1 ≤ r ≤ n+ 1 + i

p
.

Since 0 ≤ i ≤ p− 1, r = n+ 1 and Dp(n+1)+i = pn+1 proving (b).
To prove (c) we suppose that up + v is divisible by p2.

Let A =


u 0 0 · · · v
1 u 0 · · · 0
...

...
... · · ·

...
0 0 0 · · · u

. The first column of Ap is

(
up + v,

(
p

1

)
up−1,

(
p

2

)
up−2, . . . ,

(
p

p− 1

)
up

)
,

which comes from the expansion of
(
u+ v1/p

)p
. Note that every term is divisible by p. It

follows from Lemma 4.1 that every entry of Ap is divisible by p.



A Sequence of Greatest Common Divisors 21

By Fermat’s Little Theorem [4, p.24], up ≡ u (mod p). Since up + v is divisible by p2,
u ≡ −v (mod p). Therefore

Ā =


u 0 0 · · · 0 v
1 u 0 · · · 0 0
...

...
... · · ·

...
...

0 0 0 · · · 1 u

 ≡

u 0 0 · · · 0 −u
1 u 0 · · · 0 0
...

...
... · · ·

...
...

0 0 0 · · · 1 u

 (mod p).

Let B̄ = 1
p
Ap (mod p), and let e =


1
0
...
0

. Then for any p× p matrix C, Ce is equal to the

first column of C. �

Lemma 4.2. The set {e, Āe, Ā2e, . . . , Āp−1e} is linearly independent, and hence is a basis
for (Zp)p.

Proof. For 0 ≤ r ≤ p−1, the entries of Āre are the coefficients of v0, v1/p, v2/p, . . . , v(p−1)/p

in the expansion of
(
u+ v1/p

)r
. Hence all the entries in column r below the r-th place

are zero. Thus the matrix with columns e, Āe, Ā2e, . . . , Āp−1e is upper triangular, and
therefore its determinant is equal to the product of the diagonal elements [3, p.207].

The r-th diagonal element is the coefficient of vr/p in the expansion of
(
u+ v1/p

)r
, which

is 1. Hence every diagonal element is 1, and the determinant is nonzero. Therefore the
matrix is invertible, and the column vectors e, Āe, Ā2e, . . . , Āp−1e are linearly independent.
[3, p.151] �

Lemma 4.3. B̄e, B̄Āe, B̄Ā2e, . . . , B̄Āp−2e are all nonzero and B̄Āp−1e = 0.

Proof. Since B̄ ≡ 1
pA

p (mod p), the statements are equivalent to the following:

(1) At least one entry of Ap+re is not divisible by p2 for 0 ≤ r ≤ p− 2.
(2) Every entry of A2p−1e is divisible by p2.

We first show that (i) is true. The entries ofAp+re are the coefficients of v0, v1/p, v2/p, . . . , v(p−1)/p

in the expansion of
(
u+ v1/p

)p+r
where 0 ≤ r ≤ p − 2. The coefficient of v(r+1)/p is(p+r

r+1
)
u2p−1, and

(p+r
r+1
)

= (p+ r)(p+ r − 1) · · · p
(r + 1)! . The numerator is divisible by p but not

by p2.
The i-th entry of A2p−1e is the coefficient of vi/p in the expansion of

(
u+ v1/p

)2p−1
,

which is
(2p−1

i

)
u2p−1−i +

(2p−1
p+i

)
up−1−iv = up−1−i

((2p−1
i

)
up +

(2p−1
p+i

)
v
)
. Since

(2p−1
i

)
up +(2p−1

p+i

)
v =

(2p−1
i

)
(up + v) +

((2p−1
p+i

)
−
(2p−1

i

))
v and p2 divides (up + v), it is sufficient to

show that p2 divides
(2p−1

p+i

)
−
(2p−1

i

)
for 0 ≤ i ≤ p− 1.

We use induction on i. The result is true when i = 0 by a result of Charles Babbage [1]
Suppose it is true for some i < p− 1. Observe that(

2p− 1
p+ i+ 1

)
= p− i− 1
p+ i+ 1

(
2p− 1
p+ i

)

and (
2p− 1
i+ 1

)
= 2p− i− 1

i+ 1

(
2p− 1
i

)
.
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Then (
2p− 1
p+ i+ 1

)
−
(

2p− 1
i+ 1

)

= p− i− 1
p+ i− 1

((
2p− 1
p+ i

)
−
(

2p− 1
i

))
+
(
p− i− 1
p+ i+ 1 −

2p− i− 1
i+ 1

)(2p− 1
i

)
.

Observe that p− i− 1
p+ i+ 1 −

2p− i− 1
i+ 1 = − 2p2

(p+ i+ 1)(i+ 1) . Since p2 divides
(

2p− 1
p+ i

)
−(

2p− 1
i

)
and neither (p+ i+ 1) nor (i+ 1) is divisible by p,

(
2p− 1
p+ i+ 1

)
−
(

2p− 1
i+ 1

)
is

divisible by p2, and the result follows. �

Lemma 4.4. Null(Ā) =
〈


1
−up−2

up−3

...
−u
1


〉

= 〈Āp−1e〉, where 〈S〉 is the subspace spanned by

the set S of vectors.

Proof. Recall that Ā =


u 0 0 · · · 0 0 v
1 u 0 · · · 0 0 0
0 1 u · · · 0 0 0
...

...
... · · ·

...
...

...
0 0 0 · · · 0 1 u

. The unique solution of Ā


x1
x2
...
xp

 =


0
0
...
0

 is t



1
−up−2

up−3

...
−u
1


for some t in Zp. Note that since p does not divide u, Fermat’s Little

Theorem implies that up−1 ≡ 1 (mod p). By expanding (u + v1/p)p−1 (mod p), we can

show that Āp−1e =



1
−up−2

up−3

...
−u
1


. �

Lemma 4.5. Null(B̄) =
〈


1
−up−2

up−3

...
−u
1


〉

= 〈Āp−1e〉.

Proof. By Lemma 4.2, the set {e, Āe, Ā2e, . . . , Āpe} is a basis for (Zp)p. Let x ∈ Null(B̄).
Then x = c0e + c1Āe + c2Ā

2e + · · · + cp−1Ā
p−1e for some c0, c1, . . . , cp−1 in Zp. Since by

Lemma 4.3 B̄Āp−1e = 0, we have that B̄x = c0B̄e+c1B̄Āe+c2B̄Ā
2e+· · ·+cp−2B̄Ā

p−2e =
0. This implies that Āp−2(c0B̄e + c1B̄Āe+ c2B̄Ā

2 + · · ·+ cp−2B̄Ā
p−2e = 0. Since ĀB̄ ≡
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B̄Ā ≡ 1
pA

p+1 (mod p), and B̄Āre = 0 for all r ≥ p− 1, c0B̄Ā
p−2e = 0, and hence c0 = 0.

Similarly we see that Āp−3(c1B̄Āe+ c2B̄Ā
2e+ · · ·+ cp−2B̄Ā

p−2e) = 0 implies that c1 = 0.
By similar reasoning, cr = 0 for 0 ≤ r ≤ p − 2. So x = cp−1Ā

p−1e, and hence x is in
〈Āp−1e〉. �

Lemma 4.6. Dn+p ≥ pDn.

Proof. First note that


an,0
an,1
...

an,p−1

 = Dn


αn,0
αn,1
...

αn,p−1

, where gcd(αn,0, αn,1, . . . , αn,p−1) is not

divisible by p. Then


an+p,0
an+p,1

...
an+p,p−1

 = Ap


an,0
an,1
...

an,p−1

 = ApDn


αn,0
αn,1
...

αn,p−1

 .

Since every entry in the matrix Ap is divisible by p, every entry in Ap


αn,0
αn,1
...

αn,p−1

 is a

multiple of p. Therefore Dn+p ≥ pDn.
�

Lemma 4.7. Dn+p ≥ p2Dn if and only if Dn+1 ≥ pDn.

Proof. Suppose that Dn+p ≥ p2Dn. Then


an+p,0
an+p,1

...
an+p,p−1

 = Ap


an,0
an,1
...

an,p−1

 = ApDn


αn,0
αn,1
...

αn,p−1

 = pDn
1
p
Ap


αn,0
αn,1
...

αn,p−1

 .

Since Dn+p ≥ p2Dn, then every entry in 1
p
Ap


αn,0
αn,1
...

αn,p−1

 must be divisible by p. Therefore

B̄


αn,0
αn,1
...

αn,p−1

 ≡ 0 (mod p). By Lemma 4.5,


αn,0
αn,1
...

αn,p−1

 = t



1
−up−2

up−3

...
−u
1


for some t in Zp.
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By Lemma 4.4 Ā


αn,0
αn,1
...

αn,p−1

 ≡ 0 (mod p). This implies that each entry in A


αn,0
αn,1
...

αn,p−1


is divisible by p. Since

an+1,0
an+1,1

...
an+1,p−1

 = A


an,0
an,1
...

an,p−1

 = DnA


αn,0
αn,1
...

αn,p−1

 ,
it follows that Dn+1 ≥ pDn.

Now suppose that Dn+1 ≥ pDn. Since
an+1,0
an+1,1

...
an+1,p−1

 =


an,0
an,1
...

an,p−1

 = DnA


αn,0
αn,1
...

αn,p−1

 ,

the entries of A


αn,0
αn,1
...

αn,p−1

 are divisible by p. Hence Ā


αn,0
αn,1
...

αn,p−1

 ≡ 0 (mod p).

By Lemma 4.4


αn,0
αn,1
...

αn,p−1

 = t



1
−up−2

up−3

...
−u
1


for some t in Zp. By Lemma 4.5, B̄


αn,0
αn,1
...

αn,p−2

 ≡

0 (mod p).

Therefore every entry in 1
pA

p


αn,0
αn,1
...

αn,p−1

 is a multiple of p.

Since 
an+p,0
an+p,1

...
an+p,p−1

 = Ap


an,0
an,1
...

an,p−1

 = ApDn

 αn,0
αn,1

...αn,p−1

 = pDn
1
p
Ap

 αn,0
αn,1

...αn,p−1

 ,
we have that Dn+p ≥ p2Dn.

�

Corollary 4.3. Dn+1 = Dn if and only if Dn+p = pDn.

Proof. Suppose Dn+1 = Dn. By Lemma 4.7, Dn+p < p2Dn. But Lemma 4.6 says that
Dn+p ≥ pDn. Therefore Dn+p = pDn.

Now suppose that Dn+p = pDn. By Lemma 4.7 we have that Dn+1 < pDn. But
Dn+1 ≥ Dn and both Dn and Dn+1 are equal to a power of p. Therefore Dn+1 = Dn. �

Finally we are ready to prove (c).
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Proof. We want to show that Dn(p−1) + i = pn for n ≥ 0 and 1 ≤ i ≤ p−1. We first prove

that it is true for n = 0 and n = 1. By using the binomial expansion of
(
u+ v1/p

)i
we can

show that Di = 1 for 1 ≤ i ≤ p− 1 and Dp = p. In the proof of Lemma 4.3 we saw that at
least one entry of Ap+re is not divisible by p2 for 0 ≤ r ≤ p − 2. This, together with the
result of Lemma 2.4 that Di divides Di+1 for all i, implies that Di = p for p ≤ i ≤ 2p− 2.
Hence the result is true for n = 0 and for n = 1.

Now suppose that it is true for 1 ≤ i ≤ n(p − 1) + p − 1 for some n ≥ 1. Then
Dn(p−1)+1 = pn and Dn(p−1) = D(n−1)(p−1)+p−1 = pn−1. Hence Dn(p−1)+1 = pDn(p−1). By
Lemma 4.7 D(n+1)(p−1)+1 = Dn(p−1)+p ≥ p2Dn(p−1) = pn+1.

It is also true thatDn(p−1)+p−1 = Dn(p−1)+p−2 = pn. By Corollary 4.3, Dn(p−1)+p−2+p =
pDn(p−1)+p−2 = pn+1. That is D(n+1)(p−1)+p−1 = pn+1. Since Di is nondecreasing as i
increases (by Lemma 2.4), D(n+1)(p−1)+i = pn for 1 ≤ i ≤ p − 1. The result follows by
induction. �
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