
Alabama Journal of Mathematics Alabama Journal of Mathematics
Volume 46 (1) (2023), 6 – 11

Original Article

A Shifty Approach to Little Theorems

T. J. Kepka∗1, J. D. Phillips2

1Department of Algebra, MFF UK, Sokolovská 83, 186 75 Praha 8, Czech Republic
2Department of Mathematics & Computer Science, Northern Michigan University, Marquette, MI 49855

USA

Abstract
Herein, we offer a gentle yet rigorous introduction to both modular arithmetic and the
elementary combinatorics of the common shift mapping, culminating in self-contained and
accessible proofs of various cases of a general Euler Totient Function Theorem, Fermat’s
Little Theorem included. The reader may consider this an homage to T.P. Kirkman and
W.S.B. Woolhouse for their pioneering work in elementary combinatorics [2], [3]. We
recommend [1] both as a primer on the shift mapping and as an engaging example of
elementary mathematics transmogrified.
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0A. The Shift Mapping

A1. Let q ≥ 2 be a (fixed) positive integer. Define a transformation π of the interval
Q = {1, 2, 3, . . . , q} by π(i) = i + 1 for every i, 1 ≤ i < q, and π(q) = 1. For example, if
q = 6, then π(1) = 2, π(2) = 3, π(3) = 4, π(4) = 5, π(5) = 6, π(6) = 1. This shift mapping,
π, is fixed for the balance of this paper.

A2. We claim that q | (πj(i) − i − j) for all i, 1 ≤ i ≤ q, and all positive integers j.
We proceed by induction on j ≥ 1. We observe immediately that π(i) − i − 1 = 0 for
i 6= q and π(q) − q − 1 = −q. This settles the case j = 1. Using this and the induction
hypothesis, we see that q | (π(πj(i)) − πj(i) − 1) and q | (πj(i) − i − j). It follows easily
that q | (π(πj(i))− i− j − 1). But since π(πj(i)) = πj+1(i) this completes the proof.

A3. We now show that πq(i) = i for each i, 1 ≤ i ≤ q. By A2, q | (πq(i) − i − q);
hence, q | (πq(i)− i). Finally, since 0 ≤ |πq(i)− i| < q, we have |πq(i)− i| = 0, and hence,
πq(i) = i.

A4. We also note that πj(q) = j for every j, 1 ≤ j ≤ q. Indeed, by A2, q | (πj(q)−q−j),
and so q | (πj(q)− j); hence, πj(q) = j.

A5. The assertions A3 and A4 assure us that the transformation π of Q is, in fact, a
permutation of Q, whose order is just q. That is, q is the smallest positive integer such
that πq(i) = i, for all i ∈ Q. While this fact is intuitive, a rigorous proof is still a rigorous
proof.
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A6. Let 1 ≤ s ≤ q. Define a binary relation λs on the interval Q by (i, j) ∈ λs if and
only if j = πst(i) for some t ≥ 0. We claim that λs is an equivalence relation on Q, i.e.,
λs is reflexive, symmetric and transitive.

Reflexivity is clear, since i = π0(i) (i.e., t = 0). For transitivity, note that if j = πst(i)
and k = πsr(j), then πs(t+r)(i) = πsr(πst(i)) = πsr(j) = k. For symmetry, let j = πst(i)
and choose any u ≥ 1 such that q | (t + u) (for example, u = vq − t with v the smallest
positive integer such that vq ≥ t). Thus, πsu(j) = πsu(πst(i)) = πs(u+t)(i) = πsvq(i) = i.

A7. Let 1 ≤ s ≤ q and let r = gcd(s, q). Then 1 ≤ r ≤ q, r|s, and r|q. Moreover—and
this will be vital down the road—we have λs = λr, as we shall now prove. Firstly, since
r|s, s = ur, for some u, and it follows easily from the definition of the equivalences that
λs ⊆ λr. Secondly, we must show that λr ⊆ λs. This will take more effort.

Denote by N the set of all sums xs + yq, for arbitrary integers x and y. Clearly, N
contains infinitely many positive integers; let t be the smallest. Since r divides both s
and q, r divides any integer from N ; in particular r|t. We have 1 ≤ r ≤ t ≤ s ≤ q,
where s = lt + f, l ≥ 0, 0 ≤ f < t, q = gt + h, g ≥ 0, 0 ≤ h < t, and t = x1s + y1q,
where x1, y1 are suitable integers. Rearranging a bit gives lt = lx1s + ly1q, f = s − lt =
(1− lx1)s+ (−ly1)q, gt = gx1s+ gy1q, h = q− gt = (−gx1)s+ (1− gy1)q. Thus, f, h ∈ N .
Now, using the minimality of t, we get f = 0 = h. That is, t|s and t|q. But then t|gcd(s, q),
where gcd(s, q) = r. Thus, t = r, and so r = x1s + y1q. Next, find a positive integer k
such that ks > y1 and kq > −x1 (there are, again, infinitely many choices). We write
x2 = kq + x1 > 0 and y2 = ks − y1 > 0, and so x2s − y2q = kqs + x1s − ksq + y1q =
x1s+y1q = r, and thus x2s = r+y2q, with x2 and y2 positive integers. Finally, if (i, j) ∈ λr
with j = πrx(i), then πsx2x(i) = πrx+xy2q(i) = πrx(πxy2q(i)) = πrx(i) = j, and therefore
(i, j) ∈ λs. Thus, λr ⊆ λs, which completes the proof.

A8. Let 1 ≤ s ≤ q. The equivalence λs determines a partition of the interval Q. This
interval is the disjoint union of the (pair-wise different) blocks (or cosets modulo λs) of
the equivalence λs. The number of these blocks is the cardinality of the corresponding
factor-set Q/λs. We now show that this common divisor is not just great, it is the greatest
common divisor gcd(s, q)!

In view of A7, we can assume without loss of generality that s|q. We show that (i, j) /∈ λs
whenever 1 ≤ i < j ≤ s. Proceeding by contradiction, assume that (i, j) ∈ λs. Then
j = πst(i) for a non-negative integer t, and it follows from A2 that q|(j − i − st). Since
s|q, we get s|(j− i− st), s|(j− i) and 2 ≤ s ≤ j− i ≤ s− 1, a contradiction. The numbers
1, 2, . . . , s are pair-wise nonequivalent modulo λs, which means that λs possesses at least
s different blocks (this fact is, of course, trivial for s = 1).

In order to show that λs has at most s blocks, it suffices to find for every i, 1 ≤ i ≤ q,
a number j such that 1 ≤ j ≤ s and (i, j) ∈ λs. If i ≤ s, then put j = i. Thus, we
can restrict ourselves to the case s + 1 ≤ i ≤ q (then s < q). Since s|q, we have q = us
where 2 ≤ u ≤ q. Moreover, i = ks + l, 1 ≤ k ≤ u, 0 ≤ l < s. Put v = u − k, so that
0 ≤ v ≤ u− 1, i+ vs = us+ l. By A2, q|(πvs(i)−us− l). Consequently, q|(πvs(i)− l). On
the other hand, we clearly have −q < −s < 1− s < 1− l ≤ πvs(i)− l ≤ q.

If πvs(i) = l then certainly 1 ≤ l ≤ s and (i, l) ∈ λs and we can put j = l. If πvs(i) 6= l
then l = 0, πvs(i) = q, i = ks, 2 ≤ k ≤ u. Put w = u − k + 1, 1 ≤ v ≤ u − 1 ≤ q − 1. By
A2, q|(πws(i) − (ws + i)). As ws + i = (u + 1)s and q = us, we see that q|(πws(i) − s).
However, −s < 1 − s ≤ πws(i) − s ≤ q − s = (u − 1)s, and we conclude that πws(i) = s.
That is, (i, s) ∈ λs, and we put j = s.

A9. Let 1 ≤ s ≤ q. If follows directly from A8 that λs = idQ (the identity equivalence
possessing precisely q one-element blocks) if and only if gcd(s, q) = q, i.e., s = q. However,
to show this, we need not make use of the somewhat laborious results of A7 and A8;
instead, we proceed directly. The equality λq = idQ follows from A3. Conversely, if
λs = idQ, then πs(i) = i for each i, 1 ≤ i ≤ q and it follows directly from A4 that s = q.
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Another consequence of A8 is the following: λs = Q×Q (the total equivalence possessing
only one block) if and only if the numbers s and q are coprime. It seems doubtful that
this assertion can be proven in a simpler way.

Finally, and locally, let us observe that each block of the equivalence λs contains just
q

gcd(s, q) different numbers. As usual, we can restrict ourselves to the case when s|q, q =

rs, 1 ≤ r ≤ q. For 1 ≤ i ≤ q the block {j|1 ≤ j ≤ q, (i, j) ∈ λs} containing i equals the set
{πst(i)|0 ≤ t < r}. The latter set contains exactly r numbers.

0B. Two Scholia

B1. Let q ≥ 2 be a positive integer. Let A be any finite set containing m ≥ 2 elements.
Denote by A (= Aq) the set of ordered q-tuples a = (a(1), a(2), . . . , a(q)) of elements from
A. We see easily that |A| = mq (≥ 4)

B2. Define a transformation α ofA by α(a) = a(π(i)); that is, α(a) = (a(2), a(3), . . . a(q), a(1)).
B3. We now show that αj(a)(i) = a(πj(i)) for all j ≥ 0 and 1 ≤ i ≤ q. We proceed by

induction on j. The case j = 0 is clear, since α0 = idA. The case j = 1 is just the defi-
nition of the transformation α. Next, we write αj+1(a)(i) = α(αj(a))(i) = αj(a)(π(i)) =
a(πj(π(i))) = a(πj+1(a)).

B4. Combining A3 and B3, we obtain αq(a) = a for every a ∈ A.
B5. Let 1 ≤ j < q. Our goal is to show that there exists at least one q-tuple a with

αj(a) 6= a. Indeed, denote by r the smallest positive integer such that αr(a) = a for every
a ∈ A. We know from B4 that r exists and that 1 ≤ r ≤ q. We show that r = q. We
proceed by contradiction, and assume r < q. The set A contains at least two elements
and we take a, b ∈ A such that a 6= b. Now, define a ∈ A by a(i) = a for 1 ≤ i < q and
a(q) = b (a = (a, a, . . . , a, b)). By B3 and A4 we have αj(a)(q) = a(πj(q)) = a(j) = a 6=
b = a(q). Thus, αj(a) 6= a.

B6. B4 and B5 together show that α is a permutation of the set A of ordered q-tuples
and that the order of α is, again, q.

B7. For every a ∈ A, let ρ(a) designate the smallest positive integer such that αρ(a)(a) =
a. As we know from B6, ρ(a) exists and 1 ≤ ρ(a) ≤ q.

B8. Next, we show that ρ(a)|q. Since 1 ≤ ρ(a) ≤ q, we can write q = rρ(a) + s, where
r ≥ 1 and 0 ≤ s < ρ(a). Of course, αrρ(a)(a) = α(r−1)ρ(a)(αρ(a)(a)) = α(r−1)ρ(a)(a) = · · · =
αρ(a)(a) = a, and therefore αs(a) = αs(αrρ(a)(a)) = αs+rρ(a)(a) = aα(a) = a. Using the
minimality of ρ(a), we get s = 0. That is, q = rρ(a).

B9. If the ordered q-tuples a, α(a), . . . , αq−1(a) are pair-wise different, then in particular,
a 6= αj(a) for every j, 1 ≤ j ≤ q − 1, and it is clear that ρ(a) = q. On the other
hand, if αj(a) = αk(a) for some j, k, 0 ≤ j < k ≤ q − 1, then αk−j(a) = a, so that
ρ(a) ≤ k − j ≤ q − 1, ρ(a) < q.

We have shown that ρ(a) = q if and only if the q-tuples αj(a), 0 ≤ j ≤ q − 1, are
pair-wise different.

B10. In what follows, for ease of reference, a q-tuple a will be called aeptic when
ρ(a) = q.

B11. Choose two different elements a, b ∈ A and set a = (a, b, b, . . . , b) (a = (a, b) for
q = 2, a = (a, b, b) for q = 3, etc.). It is easy to see that the q-tuple a is aeptic.

B12. Let 2 ≤ r < q, r|q, q = rs, so that 2 ≤ s < q and q ≥ 4. Consider the q-tuple
a ∈ A where a(kr + 1) = a for k, 0 ≤ k ≤ s − 1 and a(i) = b otherwise (a, b ∈ A, a 6= b).
That is, a = (a, b, b, . . . , b, a, b, b, . . . , b, . . . , a, b, b, . . . , b) where the element a occurs s-
times and the element b occurs (q − s)-times (q − s = s(r − 1)). Put b = αr(a). Since
πr(1) = r+ 1, π2r(1) = 2r+ 1, . . . , π(s−1)r(1) = (s−1)r+ 1 and πrs(1) = πq(1) = 1, we see
that b(kr+ 1) = a for all k, 0 ≤ k ≤ s− 1. This means that a(kr+ 1) = a = b(kr+ 1) and
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the number of occurrences of the element a in both a and b is the same. It is now easy to
see that b = a and ρ(a) = r.

B13. It is self-evident that ρ(a) = 1 if and only if a is a constant q-tuple (i.e., a(1) =
a(2) = · · · = a(q)). The number of such q-tuples is exactly m (= |A|).

B14. The following observation will be useful: ρ(a) = |{αi(a)|0 ≤ i}|. Indeed, denote
by r the number on the right side of the equality. The q-tuples a, α(a), . . . , αρ(a)−1(a) are
pairwise different; consequently, r ≥ ρ(a). Conversely, αρ(a)+j(a) = αj(a) for every j ≥ 0,
and hence, r ≤ ρ(a).

B15. Let 1 ≤ s ≤ q and a ∈ A. Then αs(a) = a if and only if a(i) = a(j) whenever
(i, j) ∈ λs. In view of B3, αs(a) = a if and only if a(πs(i)) = a(i) for every i, 1 ≤ i ≤ q.
The rest is clear from the definition of the equivalence λs (see A6).

B16. For every a ∈ A, put w(a) = |{a(i)|1 ≤ i ≤ q}|. The number w(a) is just the
number of (different) elements from A appearing as components of the ordered q-tuple a.
Clearly, 1 ≤ w(a) ≤ min(m, q).

B17. For every a ∈ A define a binary relation σ(a) on the interval Q = {1, 2, . . . , q}
by (i, j) ∈ σ(a) if and only if a(i) = a(j). Obviously, σ(a) is a well-defined equivalence
relation on Q. Moreover, it is straightforward to see that σ(a) has exactly w(a) different
blocks.

B18. We show that λρ(a) ⊆ σ(a) for every a ∈ A. As we know (see B7), ρ(a) is
the smallest positive integer satisfying the equality αρ(a)(a) = a. Now, from B15, if
(i, j) ∈ λρ(a), then a(i) = a(j), which is the same as (i, j) ∈ σ(a) (see B17).

B19. We have now arrived at our first scholium: w(a) ≤ min(ρ(a),m) for every a ∈ A.
Let’s prove it! By B8, ρ(a)|q. By A8, the equivalence λρ(a) has exactly ρ(a) blocks.
By B17, the equivalence σ(a) has exactly w(a) blocks. By B18, λρ(a) ⊆ σ(a), and this
inclusion implies that w(a) ≤ ρ(a). The inequality w(a) ≤ m is trivial.

B20. And now, the second scholium: Put r(q) = q/p, where p is the smallest
prime number dividing q. Clearly, r(q) is just the greatest integer properly dividing
q (r(q)|q, r(q) 6= q,−q). Now, if a ∈ A is such that w(a) > r(q), then, with respect to B19,
we get r(q) ≤ ρ(a), and since ρ(a)|q, the equality ρ(a) = q is clear. The ordered q-tuple a
is thus aeptic.

As an illustration, we present a handy tablette of the values r(q) + 1 for 2 ≤ q ≤ 28:

q 2 3 4 5 6 7 8 9 10
r(q) + 1 2 2 3 2 4 2 5 4 6

q 11 12 13 14 15 16 17 18 19
r(q) + 1 2 7 2 8 6 9 2 10 2

q 20 21 22 23 24 25 26 27 28
r(q) + 1 11 8 12 2 13 6 14 10 15

Apparently, if q is a prime number, then r(q) + 1 = 2. If q = pk, where p is a prime and
k ≥ 1, then r(q) = pk−1 + 1 (r(p2) = p+ 1).

Another example: Let a ∈ A be a q-tuple such that w(a) = r(q) − 1. Since w(a) ≥ 1,
we see that r(q) ≥ 2 and q is not a prime number. Of course, q = pr(q), where p is
the smallest prime number dividing q and 2 ≤ p < q. Furthermore, by B19, we see that
r(q)− 1 ≤ ρ(a).

Assume, for a moment, that ρ(a) = r(q) − 1. By B8, q = uρ(a) = u(r(q) − 1) for
some u, 1 ≤ u ≤ q. Thus, ur(q) − u = q = vr(q), (v − u)r(q) = −u < 0, u > v, u − v ≥
1, u = (u − v)r(q) ≥ r(q). Since u|q, we have either u = q or u = r(q). If u = q, then
ρ(a) = 1 = w(a) by (B13), r(q) = 2 = p, q = 4 and a = (a, a, a, a) for some a ∈ A.
Suppose, therefore, that u = r(q). Then ρ(a) = p, r(q) = p + 1, w(a) = p, q = p2 + p,
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where q is an even number, p = 2, q = 6, ρ(a) = 2 = w(a) and a = (a, b, a, b, a, b) for some
a, b ∈ A, a 6= b.

Next, assume that ρ(a) > r(q)− 1. That is, ρ(a) ≥ r(q) and thus, either ρ(a) = r(q) or
ρ(a) = q (a is aeptic in the latter case).

Consider the case ρ(a) = r(q). Thus, we have w(a) = r(q)−1. Since ρ(a) = r(q) ≥ 2, we
get w(a) ≥ 2 and r(q) ≥ 3, q ≥ 6. It is not difficult to see that a = (b, b, . . . , b) (b repeated p-
times), where b = (a1, a2, . . . , ar), r = r(q), a1, a2, . . . ar ∈ A, and |{a1, a2, . . . , ar}| = r−1.
As a consequence of the latter equality, we see that there is a (uniquely determined) pair
(k, l) of indices, 1 ≤ k < l ≤ r, such that ak = al and ai 6= aj whenever 1 ≤ i < j ≤ r and
(i, j) 6= (k, l). For instance, if q = 6, then r(q) = 3 and b = (a, a, b), (a, b, a), (a, b, b). If
q = 8, then r(q) = 4 and b = (a, a, b, c), (a, b, a, c), (a, b, c, a), (a, b, b, c)(a, b, c, b), (a, b, c, c).

One final example: let a ∈ A be a q-tuple such that w(a) = r(q) = r. If r = 1,
then q is a prime. Assume, therefore, r ≥ 2, q = pr, with p the smallest prime dividing q.
Furthermore, r ≤ ρ(a). If ρ(a) > r then ρ(a) = q and the q-tuple a is aeptic. So, let ρ(a) =
r. It is routine to observe that then a = (a1, a2, . . . , ar, a1, a2, . . . ar, . . . , a1, a2, . . . , ar).

The moral of the story: Given q ≥ 2 first establish the number r(q), although it might
be (hopelessly) difficult. Then, given a q-tuple a, establish the number w(a) (by, alas,
a fatigueant calculation). If, by chance, it happens that w(a) ≥ r(q) − 1, then, up to
(relatively) few more or less easily recognizable exceptions, we know that the q-tuple a is
aeptic.

0C. Fermat’s Little Theorem and an Euler Theorem

C1. Define a binary relation τ on the set A by (a, b) ∈ τ if and only if b = αk(a) for
some k ≥ 0. We check that τ is an equivalence (on A).

The reflexivity of τ is trivial since a = α0(a). For transitivity, note that if b = αk(a)
and c = αl(b), then c = αk+l(a). Finally, for symmetry, let b = αk(a), r = ρ(a), so that
αk(r−1)(b) = αk(r−1)(αk(a)) = αkr(a) = a.

C2. For a ∈ A, let [a]τ denote the block of the equivalence τ that is determined by a.
This means that a ∈ [a]τ , [a]τ = {b|(a, b) ∈ τ}.

By the definition of τ , we have [a]τ = {αk(a)|k ≥ 0}. Thus, by B14, we see that the
block [a]τ contains precisely ρ(a) different q-tuples.

C3. If (a, b) ∈ τ , then ρ(a) = ρ(b).
C4. For every r, 1 ≤ r, r|q, let κ(r) be the number of those ordered q-tuples a that

satisfy the equality ρ(a) = r. If follows easily from B8 that (|A| =) mq =
∑q
r=k,r|q κ(r).

By B13, B11, and B12, we have that κ(1) = m and κ(r) ≥ 1 for every r, r|q.
We show that r|κ(r). Indeed, we have κ(r) = |Ar|, Ar = {a|ρ(a) = r}, κ(r) ≥ 1. By C3,

Ar is the disjoint union of distinct blocks of the equivalence τ . By C2, each such block
contains precisely r q-tuples. It follows that r|κ(r).

C5. Consider the following basic set-up: Let q = pt, where p is a prime and t is a
positive integer. What could be simpler! In view of C4, we obtain the equality mq −m =∑t
s=1 κ(ps). Since κ(ps) = ps·µ(ps), we getmq−m =

∑t
s=1 p

s · µ(ps) = p
∑t
s=1 p

s−1 · µ(ps).
That is, p|(mq −m). In particular, for t = 1 we get p|(mp −m = m(mp−1 − 1)). And we
have proved Fermat’s Little Theorem!

More generally, a routine check shows that κ(p) = mp − m for t ≥ 1 and κ(p2) =
mp2 −mp = mp(mp(p−1)− 1) for t ≥ 2. If, moreover, p - m, then p2|(mp(p−1)− 1) and this
assertion is a subcase of a well-known Euler Theorem; p(p − 1) = ϕ(p), where ϕ is the
Euler totient function.

As an example, choose p = 3 and t = 2. If m = 2, then κ(1) = 6 (= 2 · 3) and κ(9) =
504 (= 23 · 32 · 7). If m = 3, then κ(3) = 24 (= 23 · 3) and κ(9) = 19, 656 (= 23 · 32 · 7 · 13).
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Choose p = 1093, t ≥ 1,m ≥ 2, and, as an exercise, check that 1093 is a prime number
such that 10932|κ(1093) (so that 10932|(2q − 2)). Show all your work; no calculators,
please!

Finally, in the general case, we get κ(ps) = mps −mps−1 = mps−1(mps−1(p−1) − 1) for
1 ≤ s ≤ t (p - m implies ps|mps−1(p−1) − 1, ϕ(ps) = ps−1(p− 1)).

The foregoing approach may be used for a proof of the above-mentioned Euler Theorem.
C6. Let A = {a1, a2, . . . , am}. For all a ∈ A and j, 1 ≤ j ≤ m, let vj(a) = |{i|1 ≤ i ≤

q, a(i) = aj}|. Clearly 0 ≤ vj(a) ≤ q and q =
∑m
j=1 vj(a). Moreover, w(a) = |{j|1 ≤ j ≤

m, vj(a) 6= 0}| ≤ min(m, q) and w(a)v(a) ≤ q, where v(a) = min{vj(a)|1 ≤ j ≤ m, vj(a) 6=
0}, 1 ≤ v(a) ≤ q.

We now show that q ≤ ρ(a)v(a). Put r = ρ(a). By B15, a(i1) = a(i2), for every pair
(i1, i2) ∈ λr. If R is a block of λr, then we know that |R| = q/r (A9) and a(i1) = a(i2) = j
for all i1, i2 ∈ R and some 1 ≤ j ≤ m. Thus, vj(a) ≥ q/r. This is true for any j and
consequently, v(a) ≥ q/r.

So w(a)v(a) ≤ q ≤ ρ(a)v(a) which implies that w(a) ≤ ρ(a) (see B18 and B19).
Finally, define a binary relation ξ on A as (a, b) ∈ ξ if and only if vj(a) = vj(b) for every

j, 1 ≤ j ≤ m. Then ξ is an equivalence and τ ⊆ ξ.
There is more to say, but hanc marginis exiguitas non caperet. Perhaps others can

continue these lines. Perhaps you can!
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