# A Shifty Approach to Little Theorems 

T. J. Kepka* ${ }^{* 1}$, J. D. Phillips ${ }^{2}$<br>${ }^{1}$ Department of Algebra, MFF UK, Sokolovská 83, 18675 Praha 8, Czech Republic<br>${ }^{2}$ Department of Mathematics \& Computer Science, Northern Michigan University, Marquette, MI 49855 USA


#### Abstract

Herein, we offer a gentle yet rigorous introduction to both modular arithmetic and the elementary combinatorics of the common shift mapping, culminating in self-contained and accessible proofs of various cases of a general Euler Totient Function Theorem, Fermat's Little Theorem included. The reader may consider this an homage to T.P. Kirkman and W.S.B. Woolhouse for their pioneering work in elementary combinatorics [2], [3]. We recommend [1] both as a primer on the shift mapping and as an engaging example of elementary mathematics transmogrified.


Keywords. Fermat's Little Theorem, Euler's totient function Mathematics Subject Classification (2020). 11A99

## 0A. The Shift Mapping

A1. Let $q \geq 2$ be a (fixed) positive integer. Define a transformation $\pi$ of the interval $Q=\{1,2,3, \ldots, q\}$ by $\pi(i)=i+1$ for every $i, 1 \leq i<q$, and $\pi(q)=1$. For example, if $q=6$, then $\pi(1)=2, \pi(2)=3, \pi(3)=4, \pi(4)=5, \pi(5)=6, \pi(6)=1$. This shift mapping, $\pi$, is fixed for the balance of this paper.

A2. We claim that $q \mid\left(\pi^{j}(i)-i-j\right)$ for all $i, 1 \leq i \leq q$, and all positive integers $j$. We proceed by induction on $j \geq 1$. We observe immediately that $\pi(i)-i-1=0$ for $i \neq q$ and $\pi(q)-q-1=-q$. This settles the case $j=1$. Using this and the induction hypothesis, we see that $q \mid\left(\pi\left(\pi^{j}(i)\right)-\pi^{j}(i)-1\right)$ and $q \mid\left(\pi^{j}(i)-i-j\right)$. It follows easily that $q \mid\left(\pi\left(\pi^{j}(i)\right)-i-j-1\right)$. But since $\pi\left(\pi^{j}(i)\right)=\pi^{j+1}(i)$ this completes the proof.

A3. We now show that $\pi^{q}(i)=i$ for each $i, 1 \leq i \leq q$. By A2, $q \mid\left(\pi^{q}(i)-i-q\right)$; hence, $q \mid\left(\pi^{q}(i)-i\right)$. Finally, since $0 \leq\left|\pi^{q}(i)-i\right|<q$, we have $\left|\pi^{q}(i)-i\right|=0$, and hence, $\pi^{q}(i)=i$.
A4. We also note that $\pi^{j}(q)=j$ for every $j, 1 \leq j \leq q$. Indeed, by A2, $q \mid\left(\pi^{j}(q)-q-j\right)$, and so $q \mid\left(\pi^{j}(q)-j\right)$; hence, $\pi^{j}(q)=j$.

A5. The assertions A3 and A4 assure us that the transformation $\pi$ of $Q$ is, in fact, a permutation of $Q$, whose order is just $q$. That is, $q$ is the smallest positive integer such that $\pi^{q}(i)=i$, for all $i \in Q$. While this fact is intuitive, a rigorous proof is still a rigorous proof.

[^0]A6. Let $1 \leq s \leq q$. Define a binary relation $\lambda_{s}$ on the interval $Q$ by $(i, j) \in \lambda_{s}$ if and only if $j=\pi^{s t}(i)$ for some $t \geq 0$. We claim that $\lambda_{s}$ is an equivalence relation on $Q$, i.e., $\lambda_{s}$ is reflexive, symmetric and transitive.

Reflexivity is clear, since $i=\pi^{0}(i)$ (i.e., $t=0$ ). For transitivity, note that if $j=\pi^{s t}(i)$ and $k=\pi^{s r}(j)$, then $\pi^{s(t+r)}(i)=\pi^{s r}\left(\pi^{s t}(i)\right)=\pi^{s r}(j)=k$. For symmetry, let $j=\pi^{s t}(i)$ and choose any $u \geq 1$ such that $q \mid(t+u)$ (for example, $u=v q-t$ with $v$ the smallest positive integer such that $v q \geq t)$. Thus, $\pi^{s u}(j)=\pi^{s u}\left(\pi^{s t}(i)\right)=\pi^{s(u+t)}(i)=\pi^{s v q}(i)=i$.

A7. Let $1 \leq s \leq q$ and let $r=\operatorname{gcd}(s, q)$. Then $1 \leq r \leq q, r \mid s$, and $r \mid q$. Moreover-and this will be vital down the road-we have $\lambda_{s}=\lambda_{r}$, as we shall now prove. Firstly, since $r \mid s, s=u r$, for some $u$, and it follows easily from the definition of the equivalences that $\lambda_{s} \subseteq \lambda_{r}$. Secondly, we must show that $\lambda_{r} \subseteq \lambda_{s}$. This will take more effort.

Denote by $N$ the set of all sums $x s+y q$, for arbitrary integers $x$ and $y$. Clearly, $N$ contains infinitely many positive integers; let $t$ be the smallest. Since $r$ divides both $s$ and $q, r$ divides any integer from $N$; in particular $r \mid t$. We have $1 \leq r \leq t \leq s \leq q$, where $s=l t+f, l \geq 0,0 \leq f<t, q=g t+h, g \geq 0,0 \leq h<t$, and $t=x_{1} s+y_{1} q$, where $x_{1}, y_{1}$ are suitable integers. Rearranging a bit gives $l t=l x_{1} s+l y_{1} q, f=s-l t=$ $\left(1-l x_{1}\right) s+\left(-l y_{1}\right) q, g t=g x_{1} s+g y_{1} q, h=q-g t=\left(-g x_{1}\right) s+\left(1-g y_{1}\right) q$. Thus, $f, h \in N$. Now, using the minimality of $t$, we get $f=0=h$. That is, $t \mid s$ and $t \mid q$. But then $t \mid \operatorname{gcd}(s, q)$, where $\operatorname{gcd}(s, q)=r$. Thus, $t=r$, and so $r=x_{1} s+y_{1} q$. Next, find a positive integer $k$ such that $k s>y_{1}$ and $k q>-x_{1}$ (there are, again, infinitely many choices). We write $x_{2}=k q+x_{1}>0$ and $y_{2}=k s-y_{1}>0$, and so $x_{2} s-y_{2} q=k q s+x_{1} s-k s q+y_{1} q=$ $x_{1} s+y_{1} q=r$, and thus $x_{2} s=r+y_{2} q$, with $x_{2}$ and $y_{2}$ positive integers. Finally, if $(i, j) \in \lambda_{r}$ with $j=\pi^{r x}(i)$, then $\pi^{s x_{2} x}(i)=\pi^{r x+x y_{2} q}(i)=\pi^{r x}\left(\pi^{x y_{2} q}(i)\right)=\pi^{r x}(i)=j$, and therefore $(i, j) \in \lambda_{s}$. Thus, $\lambda_{r} \subseteq \lambda_{s}$, which completes the proof.

A8. Let $1 \leq s \leq q$. The equivalence $\lambda_{s}$ determines a partition of the interval $Q$. This interval is the disjoint union of the (pair-wise different) blocks (or cosets modulo $\lambda_{s}$ ) of the equivalence $\lambda_{s}$. The number of these blocks is the cardinality of the corresponding factor-set $Q / \lambda_{s}$. We now show that this common divisor is not just great, it is the greatest common divisor $\operatorname{gcd}(s, q)$ !

In view of A7, we can assume without loss of generality that $s \mid q$. We show that $(i, j) \notin \lambda_{s}$ whenever $1 \leq i<j \leq s$. Proceeding by contradiction, assume that $(i, j) \in \lambda_{s}$. Then $j=\pi^{s t}(i)$ for a non-negative integer $t$, and it follows from A2 that $q \mid(j-i-s t)$. Since $s \mid q$, we get $s|(j-i-s t), s|(j-i)$ and $2 \leq s \leq j-i \leq s-1$, a contradiction. The numbers $1,2, \ldots, s$ are pair-wise nonequivalent modulo $\lambda_{s}$, which means that $\lambda_{s}$ possesses at least $s$ different blocks (this fact is, of course, trivial for $s=1$ ).

In order to show that $\lambda_{s}$ has at most $s$ blocks, it suffices to find for every $i, 1 \leq i \leq q$, a number $j$ such that $1 \leq j \leq s$ and $(i, j) \in \lambda_{s}$. If $i \leq s$, then put $j=i$. Thus, we can restrict ourselves to the case $s+1 \leq i \leq q$ (then $s<q$ ). Since $s \mid q$, we have $q=u s$ where $2 \leq u \leq q$. Moreover, $i=k s+l, 1 \leq k \leq u, 0 \leq l<s$. Put $v=u-k$, so that $0 \leq v \leq u-1, i+v s=u s+l$. By A2, $q \mid\left(\pi^{v s}(i)-u s-l\right)$. Consequently, $q \mid\left(\pi^{v s}(i)-l\right)$. On the other hand, we clearly have $-q<-s<1-s<1-l \leq \pi^{v s}(i)-l \leq q$.

If $\pi^{v s}(i)=l$ then certainly $1 \leq l \leq s$ and $(i, l) \in \lambda_{s}$ and we can put $j=l$. If $\pi^{v s}(i) \neq l$ then $l=0, \pi^{v s}(i)=q, i=k s, 2 \leq k \leq u$. Put $w=u-k+1,1 \leq v \leq u-1 \leq q-1$. By A2, $q \mid\left(\pi^{w s}(i)-(w s+i)\right)$. As $w s+i=(u+1) s$ and $q=u s$, we see that $q \mid\left(\pi^{w s}(i)-s\right)$. However, $-s<1-s \leq \pi^{w s}(i)-s \leq q-s=(u-1) s$, and we conclude that $\pi^{w s}(i)=s$. That is, $(i, s) \in \lambda_{s}$, and we put $j=s$.

A9. Let $1 \leq s \leq q$. If follows directly from A8 that $\lambda_{s}=\mathrm{id}_{Q}$ (the identity equivalence possessing precisely $q$ one-element blocks) if and only if $\operatorname{gcd}(s, q)=q$, i.e., $s=q$. However, to show this, we need not make use of the somewhat laborious results of A7 and A8; instead, we proceed directly. The equality $\lambda_{q}=\mathrm{id}_{Q}$ follows from A3. Conversely, if $\lambda_{s}=\operatorname{id}_{Q}$, then $\pi^{s}(i)=i$ for each $i, 1 \leq i \leq q$ and it follows directly from A4 that $s=q$.

Another consequence of A8 is the following: $\lambda_{s}=Q \times Q$ (the total equivalence possessing only one block) if and only if the numbers $s$ and $q$ are coprime. It seems doubtful that this assertion can be proven in a simpler way.

Finally, and locally, let us observe that each block of the equivalence $\lambda_{s}$ contains just $\frac{q}{\operatorname{gcd}(s, q)}$ different numbers. As usual, we can restrict ourselves to the case when $s \mid q, q=$ $r s, 1 \leq r \leq q$. For $1 \leq i \leq q$ the block $\left\{j \mid 1 \leq j \leq q,(i, j) \in \lambda_{s}\right\}$ containing $i$ equals the set $\left\{\pi^{s t}(i) \mid 0 \leq t<r\right\}$. The latter set contains exactly $r$ numbers.

## 0B. Two Scholia

B1. Let $q \geq 2$ be a positive integer. Let $A$ be any finite set containing $m \geq 2$ elements. Denote by $\underline{A}\left(=A^{q}\right)$ the set of ordered $q$-tuples $\underline{a}=(\underline{a}(1), \underline{a}(2), \ldots, \underline{a}(q))$ of elements from $A$. We see easily that $|\underline{A}|=m^{q}(\geq 4)$

B2. Define a transformation $\alpha$ of $\underline{A}$ by $\alpha(\underline{a})=\underline{a}(\pi(i))$; that is, $\alpha(\underline{a})=(\underline{a}(2), \underline{a}(3), \ldots \underline{a}(q), \underline{a}(1))$.
B3. We now show that $\alpha^{j}(\underline{a})(i)=\underline{a}\left(\pi^{j}(i)\right)$ for all $j \geq 0$ and $1 \leq i \leq q$. We proceed by induction on $j$. The case $j=0$ is clear, since $\alpha^{0}=\operatorname{id}_{\underline{A}}$. The case $j=1$ is just the definition of the transformation $\alpha$. Next, we write $\alpha^{j+1}(\underline{a})(i)=\alpha\left(\alpha^{j}(\underline{a})\right)(i)=\alpha^{j}(\underline{a})(\pi(i))=$ $\underline{a}\left(\pi^{j}(\pi(i))\right)=\underline{a}\left(\pi^{j+1}(\underline{a})\right)$.

B4. Combining A3 and B3, we obtain $\alpha^{q}(\underline{a})=\underline{a}$ for every $\underline{a} \in \underline{A}$.
B5. Let $1 \leq j<q$. Our goal is to show that there exists at least one $q$-tuple $\underline{a}$ with $\alpha^{j}(\underline{a}) \neq \underline{a}$. Indeed, denote by $r$ the smallest positive integer such that $\alpha^{r}(\underline{a})=\underline{a}$ for every $\underline{a} \in \underline{A}$. We know from B 4 that $r$ exists and that $1 \leq r \leq q$. We show that $r=q$. We proceed by contradiction, and assume $r<q$. The set $A$ contains at least two elements and we take $a, b \in A$ such that $a \neq b$. Now, define $\underline{a} \in A$ by $\underline{a}(i)=a$ for $1 \leq i<q$ and $\underline{a}(q)=b(\underline{a}=(a, a, \ldots, a, b))$. By B3 and A4 we have $\alpha^{j}(\underline{a})(q)=\underline{a}\left(\pi^{j}(q)\right)=\underline{a}(j)=a \neq$ $b=\underline{a}(q)$. Thus, $\alpha^{j}(\underline{a}) \neq \underline{a}$.

B6. B4 and B5 together show that $\alpha$ is a permutation of the set $\underline{A}$ of ordered $q$-tuples and that the order of $\alpha$ is, again, $q$.

B7. For every $\underline{a} \in \underline{A}$, let $\rho(\underline{a})$ designate the smallest positive integer such that $\alpha^{\rho(\underline{a})}(\underline{a})=$ $\underline{a}$. As we know from $\mathrm{B} 6, \rho(\underline{a})$ exists and $1 \leq \rho(\underline{a}) \leq q$.

B8. Next, we show that $\rho(\underline{a}) \mid q$. Since $1 \leq \rho(\underline{a}) \leq q$, we can write $q=r \rho(\underline{a})+s$, where $r \geq 1$ and $0 \leq s<\rho(\underline{a})$. Of course, $\alpha^{r \rho(\underline{a})}(\underline{a})=\alpha^{(r-1) \rho(\underline{a})}\left(\alpha^{\rho(\underline{a})}(\underline{a})\right)=\alpha^{(r-1) \rho(\underline{a})}(\underline{a})=\cdots=$ $\alpha^{\overline{\rho(a})}(\underline{a})=\underline{a}$, and therefore $\alpha^{s}(\underline{a})=\alpha^{s}\left(\alpha^{r \rho(\underline{a})}(\underline{a})\right)=\alpha^{s+r \rho(\underline{a})}(\underline{a})=a^{\alpha}(\underline{a})=\underline{a}$. Using the minimality of $\rho(\underline{a})$, we get $s=0$. That is, $q=r \rho(\underline{a})$.

B9. If the ordered $q$-tuples $\underline{a}, \alpha(\underline{a}), \ldots, \alpha^{q-1}(\underline{a})$ are pair-wise different, then in particular, $\underline{a} \neq \alpha^{j}(\underline{a})$ for every $j, 1 \leq j \leq q-1$, and it is clear that $\rho(\underline{a})=q$. On the other hand, if $\alpha^{j}(\underline{a})=\alpha^{k}(\underline{a})$ for some $j, k, 0 \leq j<k \leq q-1$, then $\alpha^{k-j}(\underline{a})=\underline{a}$, so that $\rho(\underline{a}) \leq k-j \leq q-1, \rho(\underline{a})<q$.

We have shown that $\rho(\underline{a})=q$ if and only if the $q$-tuples $\alpha^{j}(\underline{a}), 0 \leq j \leq q-1$, are pair-wise different.

B10. In what follows, for ease of reference, a $q$-tuple $\underline{a}$ will be called aeptic when $\rho(\underline{a})=q$.

B11. Choose two different elements $a, b \in A$ and set $\underline{a}=(a, b, b, \ldots, b)(\underline{a}=(a, b)$ for $q=2, \underline{a}=(a, b, b)$ for $q=3$, etc.). It is easy to see that the $q$-tuple $\underline{a}$ is aeptic.

B12. Let $2 \leq r<q, r \mid q, q=r s$, so that $2 \leq s<q$ and $q \geq 4$. Consider the $q$-tuple $\underline{a} \in \underline{A}$ where $\underline{a}(k r+1)=a$ for $k, 0 \leq k \leq s-1$ and $\underline{a}(i)=b$ otherwise $(a, b \in A, a \neq b)$. That is, $\underline{a}=(a, b, b, \ldots, b, a, b, b, \ldots, b, \ldots, a, b, b, \ldots, b)$ where the element $a$ occurs $s$ times and the element $b$ occurs $(q-s)$-times $(q-s=s(r-1))$. Put $\underline{b}=\alpha^{r}(\underline{a})$. Since $\pi^{r}(1)=r+1, \pi^{2 r}(1)=2 r+1, \ldots, \pi^{(s-1) r}(1)=(s-1) r+1$ and $\pi^{r s}(1)=\pi^{q}(1)=1$, we see that $\underline{b}(k r+1)=a$ for all $k, 0 \leq k \leq s-1$. This means that $\underline{a}(k r+1)=a=\underline{b}(k r+1)$ and
the number of occurrences of the element $a$ in both $\underline{a}$ and $\underline{b}$ is the same. It is now easy to see that $\underline{b}=\underline{a}$ and $\rho(\underline{a})=r$.

B13. It is self-evident that $\rho(\underline{a})=1$ if and only if $\underline{a}$ is a constant $q$-tuple (i.e., $\underline{a}(1)=$ $\underline{a}(2)=\cdots=\underline{a}(q))$. The number of such $q$-tuples is exactly $m(=|A|)$.

B14. The following observation will be useful: $\rho(\underline{a})=\left|\left\{\alpha^{i}(\underline{a}) \mid 0 \leq i\right\}\right|$. Indeed, denote by $r$ the number on the right side of the equality. The $q$-tuples $\underline{a}, \alpha(\underline{a}), \ldots, \alpha^{\rho(\underline{a})-1}(\underline{a})$ are pairwise different; consequently, $r \geq \rho(\underline{a})$. Conversely, $\alpha^{\rho(\underline{a})+j}(\underline{a})=\alpha^{j}(\underline{a})$ for every $j \geq 0$, and hence, $r \leq \rho(\underline{a})$.

B15. Let $1 \leq s \leq q$ and $\underline{a} \in \underline{A}$. Then $\alpha^{s}(\underline{a})=\underline{a}$ if and only if $\underline{a}(i)=\underline{a}(j)$ whenever $(i, j) \in \lambda_{s}$. In view of $\mathrm{B} 3, \alpha^{s}(\underline{a})=\underline{a}$ if and only if $\underline{a}\left(\pi^{s}(i)\right)=\underline{a}(i)$ for every $i, 1 \leq i \leq q$. The rest is clear from the definition of the equivalence $\lambda_{s}$ (see A6).

B16. For every $\underline{a} \in \underline{A}$, put $w(\underline{a})=|\{\underline{a}(i) \mid 1 \leq i \leq q\}|$. The number $w(\underline{a})$ is just the number of (different) elements from $A$ appearing as components of the ordered $q$-tuple $\underline{a}$. Clearly, $1 \leq w(\underline{a}) \leq \min (m, q)$.

B17. For every $\underline{a} \in \underline{A}$ define a binary relation $\sigma(\underline{a})$ on the interval $Q=\{1,2, \ldots, q\}$ by $(i, j) \in \sigma(\underline{a})$ if and only if $\underline{a}(i)=\underline{a}(j)$. Obviously, $\sigma(\underline{a})$ is a well-defined equivalence relation on $Q$. Moreover, it is straightforward to see that $\sigma(\underline{a})$ has exactly $w(\underline{a})$ different blocks.

B18. We show that $\lambda_{\rho(\underline{a})} \subseteq \sigma(\underline{a})$ for every $\underline{a} \in \underline{A}$. As we know (see B7), $\rho(\underline{a})$ is the smallest positive integer satisfying the equality $\alpha^{\rho(\underline{a})}(\underline{a})=\underline{a}$. Now, from B15, if $(i, j) \in \lambda_{\rho(\underline{a})}$, then $\underline{a}(i)=\underline{a}(j)$, which is the same as $(i, j) \in \sigma(\underline{a}) \quad$ (see B17).

B19. We have now arrived at our first scholium: $w(\underline{a}) \leq \min (\rho(\underline{a}), m)$ for every $\underline{a} \in \underline{A}$. Let's prove it! By B8, $\rho(\underline{a}) \mid q$. By A8, the equivalence $\lambda_{\rho(\underline{a})}$ has exactly $\rho(\underline{a})$ blocks. By B17, the equivalence $\sigma(\underline{a})$ has exactly $w(\underline{a})$ blocks. By $\mathrm{B} 18, \lambda_{\rho(\underline{a})} \subseteq \sigma(\underline{a})$, and this inclusion implies that $w(\underline{a}) \leq \rho(\underline{a})$. The inequality $w(\underline{a}) \leq m$ is trivial.

B20. And now, the second scholium: Put $r(q)=q / p$, where $p$ is the smallest prime number dividing $q$. Clearly, $r(q)$ is just the greatest integer properly dividing $q(r(q) \mid q, r(q) \neq q,-q)$. Now, if $\underline{a} \in \underline{A}$ is such that $w(\underline{a})>r(q)$, then, with respect to B19, we get $r(q) \leq \rho(\underline{a})$, and since $\rho(\underline{a}) \mid q$, the equality $\rho(\underline{a})=q$ is clear. The ordered $q$-tuple $\underline{a}$ is thus aeptic.

As an illustration, we present a handy tablette of the values $r(q)+1$ for $2 \leq q \leq 28$ :

| $\mathbf{q}$ | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{r}(\mathbf{q})+\mathbf{1}$ | 2 | 2 | 3 | 2 | 4 | 2 | 5 | 4 | 6 |
| $\mathbf{q}$ | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 |
| $\mathbf{r}(\mathbf{q})+\mathbf{1}$ | 2 | 7 | 2 | 8 | 6 | 9 | 2 | 10 | 2 |
| $\mathbf{q}$ | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 |
| $\mathbf{r}(\mathbf{q})+\mathbf{1}$ | 11 | 8 | 12 | 2 | 13 | 6 | 14 | 10 | 15 |

Apparently, if $q$ is a prime number, then $r(q)+1=2$. If $q=p^{k}$, where $p$ is a prime and $k \geq 1$, then $r(q)=p^{k-1}+1\left(r\left(p^{2}\right)=p+1\right)$.

Another example: Let $\underline{a} \in \underline{A}$ be a $q$-tuple such that $w(\underline{a})=r(q)-1$. Since $w(\underline{a}) \geq 1$, we see that $r(q) \geq 2$ and $q$ is not a prime number. Of course, $q=p r(q)$, where $p$ is the smallest prime number dividing $q$ and $2 \leq p<q$. Furthermore, by B19, we see that $r(q)-1 \leq \rho(\underline{a})$.

Assume, for a moment, that $\rho(\underline{a})=r(q)-1$. By B8, $q=u \rho(\underline{a})=u(r(q)-1)$ for some $u, 1 \leq u \leq q$. Thus, $\operatorname{ur}(q)-u=q=\operatorname{vr}(q),(v-u) r(q)=-u<0, u>v, u-v \geq$ $1, u=(u-v) r(q) \geq r(q)$. Since $u \mid q$, we have either $u=q$ or $u=r(q)$. If $u=q$, then $\rho(\underline{a})=1=w(\underline{a})$ by (B13), $r(q)=2=p, q=4$ and $\underline{a}=(a, a, a, a)$ for some $a \in A$. Suppose, therefore, that $u=r(q)$. Then $\rho(\underline{a})=p, r(q)=p+1, w(\underline{a})=p, q=p^{2}+p$,
where $q$ is an even number, $p=2, q=6, \rho(\underline{a})=2=w(\underline{a})$ and $\underline{a}=(a, b, a, b, a, b)$ for some $a, b \in A, a \neq b$.

Next, assume that $\rho(\underline{a})>r(q)-1$. That is, $\rho(\underline{a}) \geq r(q)$ and thus, either $\rho(\underline{a})=r(q)$ or $\rho(\underline{a})=q(\underline{a}$ is aeptic in the latter case).

Consider the case $\rho(\underline{a})=r(q)$. Thus, we have $w(\underline{a})=r(q)-1$. Since $\rho(\underline{a})=r(q) \geq 2$, we get $w(\underline{a}) \geq 2$ and $r(q) \geq 3, q \geq 6$. It is not difficult to see that $\underline{a}=(\underline{b}, \underline{b}, \ldots, \underline{b})(\underline{b}$ repeated $p$ times), where $\underline{b}=\left(a_{1}, a_{2}, \ldots, a_{r}\right), r=r(q), a_{1}, a_{2}, \ldots a_{r} \in A$, and $\left|\left\{a_{1}, a_{2}, \ldots, a_{r}\right\}\right|=r-1$. As a consequence of the latter equality, we see that there is a (uniquely determined) pair $(k, l)$ of indices, $1 \leq k<l \leq r$, such that $a_{k}=a_{l}$ and $a_{i} \neq a_{j}$ whenever $1 \leq i<j \leq r$ and $(i, j) \neq(k, l)$. For instance, if $q=6$, then $r(q)=3$ and $\underline{b}=(a, a, b),(a, b, a),(a, b, b)$. If $q=8$, then $r(q)=4$ and $\underline{b}=(a, a, b, c),(a, b, a, c),(a, b, c, a),(a, b, b, c)(a, b, c, b),(a, b, c, c)$.

One final example: let $\underline{a} \in \underline{A}$ be a $q$-tuple such that $w(\underline{a})=r(q)=r$. If $r=1$, then $q$ is a prime. Assume, therefore, $r \geq 2, q=p r$, with $p$ the smallest prime dividing $q$. Furthermore, $r \leq \rho(\underline{a})$. If $\rho(\underline{a})>r$ then $\rho(\underline{a})=q$ and the $q$-tuple $\underline{a}$ is aeptic. So, let $\rho(\underline{a})=$ $r$. It is routine to observe that then $\underline{a}=\left(a_{1}, a_{2}, \ldots, a_{r}, a_{1}, a_{2}, \ldots a_{r}, \ldots, a_{1}, a_{2}, \ldots, a_{r}\right)$.

The moral of the story: Given $q \geq 2$ first establish the number $r(q)$, although it might be (hopelessly) difficult. Then, given a $q$-tuple $\underline{a}$, establish the number $w(\underline{a})$ (by, alas, a fatigueant calculation). If, by chance, it happens that $w(\underline{a}) \geq r(q)-1$, then, up to (relatively) few more or less easily recognizable exceptions, we know that the $q$-tuple $\underline{a}$ is aeptic.

0C. Fermat's Little Theorem and an Euler Theorem
C1. Define a binary relation $\tau$ on the set $\underline{A}$ by $(\underline{a}, \underline{b}) \in \tau$ if and only if $\underline{b}=\alpha^{k}(\underline{a})$ for some $k \geq 0$. We check that $\tau$ is an equivalence (on $\underline{A}$ ).

The reflexivity of $\tau$ is trivial since $\underline{a}=\alpha^{0}(\underline{a})$. For transitivity, note that if $\underline{b}=\alpha^{k}(\underline{a})$ and $\underline{c}=\alpha^{l}(\underline{b})$, then $c=\alpha^{k+l}(\underline{a})$. Finally, for symmetry, let $b=\alpha^{k}(\underline{a}), r=\rho(\underline{a})$, so that $\alpha^{k(r-1)}(\underline{b})=\alpha^{k(r-1)}\left(\alpha^{k}(\underline{a})\right)=\alpha^{k r}(\underline{a})=\underline{a}$.

C2. For $\underline{a} \in \underline{A}$, let $[\underline{a}]_{\tau}$ denote the block of the equivalence $\tau$ that is determined by $\underline{a}$. This means that $\underline{a} \in[\underline{a}]_{\tau},[\underline{a}]_{\tau}=\{\underline{b} \mid(\underline{a}, \underline{b}) \in \tau\}$.

By the definition of $\tau$, we have $[\underline{a}]_{\tau}=\left\{\alpha^{k}(\underline{a}) \mid k \geq 0\right\}$. Thus, by B14, we see that the block $[\underline{a}]_{\tau}$ contains precisely $\rho(\underline{a})$ different $q$-tuples.

C3. If $(\underline{a}, \underline{b}) \in \tau$, then $\rho(\underline{a})=\rho(\underline{b})$.
C4. For every $r, 1 \leq r, r \mid q$, let $\kappa(r)$ be the number of those ordered $q$-tuples $\underline{a}$ that satisfy the equality $\rho(\underline{a})=r$. If follows easily from B 8 that $(|A|=) m^{q}=\sum_{r=k, r \mid q}^{q} \kappa(r)$. By B13, B11, and B12, we have that $\kappa(1)=m$ and $\kappa(r) \geq 1$ for every $r, r \mid q$.

We show that $r \mid \kappa(r)$. Indeed, we have $\kappa(r)=\left|\underline{A}_{r}\right|, \underline{A}_{r}=\{\underline{a} \mid \rho(\underline{a})=r\}, \kappa(r) \geq 1$. By C3, $\underline{A}_{r}$ is the disjoint union of distinct blocks of the equivalence $\tau$. By C2, each such block contains precisely $r q$-tuples. It follows that $r \mid \kappa(r)$.

C5. Consider the following basic set-up: Let $q=p^{t}$, where $p$ is a prime and $t$ is a positive integer. What could be simpler! In view of C4, we obtain the equality $m^{q}-m=$ $\sum_{s=1}^{t} \kappa\left(p^{s}\right)$. Since $\kappa\left(p^{s}\right)=p^{s} \cdot \mu\left(p^{s}\right)$, we get $m^{q}-m=\sum_{s=1}^{t} p^{s} \cdot \mu\left(p^{s}\right)=p \sum_{s=1}^{t} p^{s-1} \cdot \mu\left(p^{s}\right)$. That is, $p \mid\left(m^{q}-m\right)$. In particular, for $t=1$ we get $p \mid\left(m^{p}-m=m\left(m^{p-1}-1\right)\right)$. And we have proved Fermat's Little Theorem!

More generally, a routine check shows that $\kappa(p)=m^{p}-m$ for $t \geq 1$ and $\kappa\left(p^{2}\right)=$ $m^{p^{2}}-m^{p}=m^{p}\left(m^{p(p-1)}-1\right)$ for $t \geq 2$. If, moreover, $p \nmid m$, then $p^{2} \mid\left(m^{p(p-1)}-1\right)$ and this assertion is a subcase of a well-known Euler Theorem; $p(p-1)=\varphi(p)$, where $\varphi$ is the Euler totient function.

As an example, choose $p=3$ and $t=2$. If $m=2$, then $\kappa(1)=6(=2 \cdot 3)$ and $\kappa(9)=$ $504\left(=2^{3} \cdot 3^{2} \cdot 7\right)$. If $m=3$, then $\kappa(3)=24\left(=2^{3} \cdot 3\right)$ and $\kappa(9)=19,656\left(=2^{3} \cdot 3^{2} \cdot 7 \cdot 13\right)$.

Choose $p=1093, t \geq 1, m \geq 2$, and, as an exercise, check that 1093 is a prime number such that $1093^{2} \mid \kappa(1093)$ (so that $1093^{2} \mid\left(2^{q}-2\right)$ ). Show all your work; no calculators, please!

Finally, in the general case, we get $\kappa\left(p^{s}\right)=m^{p^{s}}-m^{p^{s-1}}=m^{p^{s-1}}\left(m^{p^{s-1}(p-1)}-1\right)$ for $1 \leq s \leq t\left(p \nmid m\right.$ implies $\left.p^{s} \mid m^{p^{s-1}(p-1)}-1, \varphi\left(p^{s}\right)=p^{s-1}(p-1)\right)$.

The foregoing approach may be used for a proof of the above-mentioned Euler Theorem.
C6. Let $A=\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}$. For all $\underline{a} \in \underline{A}$ and $j, 1 \leq j \leq m$, let $v_{j}(\underline{a})=\mid\{i \mid 1 \leq i \leq$ $\left.q, \underline{a}(i)=a_{j}\right\} \mid$. Clearly $0 \leq v_{j}(\underline{a}) \leq q$ and $q=\sum_{j=1}^{m} v_{j}(\underline{a})$. Moreover, $w(\underline{a})=\mid\{j \mid 1 \leq j \leq$ $\left.m, v_{j}(\underline{a}) \neq 0\right\} \mid \leq \min (m, q)$ and $w(\underline{a}) v(\underline{a}) \leq q$, where $v(\underline{a})=\min \left\{v_{j}(\underline{a}) \mid 1 \leq j \leq m, v_{j}(\underline{a}) \neq\right.$ $0\}, 1 \leq v(\underline{a}) \leq q$.

We now show that $q \leq \rho(\underline{a}) v(\underline{a})$. Put $r=\rho(\underline{a})$. By B15, $\underline{a}\left(i_{1}\right)=\underline{a}\left(i_{2}\right)$, for every pair $\left(i_{1}, i_{2}\right) \in \lambda_{r}$. If $R$ is a block of $\lambda_{r}$, then we know that $|R|=q / r(\mathrm{~A} 9)$ and $\underline{a}\left(i_{1}\right)=\underline{a}\left(i_{2}\right)=j$ for all $i_{1}, i_{2} \in R$ and some $1 \leq j \leq m$. Thus, $v_{j}(\underline{a}) \geq q / r$. This is true for any $j$ and consequently, $v(\underline{a}) \geq q / r$.

So $w(\underline{a}) v(\underline{a}) \leq q \leq \rho(\underline{a}) v(\underline{a})$ which implies that $w(\underline{a}) \leq \rho(\underline{a})$ (see B18 and B19).
Finally, define a binary relation $\xi$ on $\underline{A}$ as $(\underline{a}, \underline{b}) \in \xi$ if and only if $v_{j}(\underline{a})=v_{j}(\underline{b})$ for every $j, 1 \leq j \leq m$. Then $\xi$ is an equivalence and $\tau \subseteq \xi$.

There is more to say, but hanc marginis exiguitas non caperet. Perhaps others can continue these lines. Perhaps you can!

## References

[1] P. Dehornoy, Algebraic Properties of the Shift Mapping, Proc. Amer. Math. Soc., 106(1989), 617-623.
[2] T. P. Kirkman, Query VI, The Lady's and Gentleman's Diary, 1850, pg. 48.
[3] W. S. B. Woolhouse, XV. Prize Question (1733), Lady's and Gentleman's Diary. 1844, pg. 84.


[^0]:    *Corresponding Author.
    Email addresses: kepka@karlin.mff.cuni.cz, jophilli@nmu.edu

