Sums of Powers of Cyclically Consecutive Integers

Nathan P. Jones ${ }^{* 1}$
${ }^{1}$ University of Kentucky, Lexington, KY 40506

Abstract

The study in [1] of divisibility properties of sums of $k^{\text {th }}$ powers of k-many consecutive non-negative integers inspires an analogous study in the rings \mathbb{Z}_{n}. Inquiry into this new context uncovers interesting behavior.

Mathematics Subject Classification (2020). 16D60,
Keywords. Finite Rings, Power Sums, Modular Arithmetic

1. Introduction

It is a well-known fact that the sum of cubes of three consecutive integers is always divisible by 9 . The divisibility of sums of $k^{\text {th }}$ powers of k-many consecutive integers has been well-studied by Ho, Mellblom, and Frodyma [1]. However, properties of sums over the ring of integers modulo n have not; these sums will be the primary focus of this paper.

Throughout the paper, \mathbb{Z}^{+}will denote the set of positive integers, and \mathbb{Z}_{n} will denote the ring of integers modulo n for $n \in \mathbb{Z}^{+}$

Definition 1.1. For $n, k \in \mathbb{Z}^{+}$, define

$$
A_{n, k}:=\left\{(\alpha, \ldots, \alpha+k-1) \mid \alpha \in \mathbb{Z}_{n}\right\} \subseteq \mathbb{Z}_{n}^{k}
$$

$A_{n, k}$ is the set of cyclically consecutive sequences of length k in \mathbb{Z}_{n}.
With fixed k, each element in $A_{n, k}$ is uniquely determined by the first element α. Since $\left|\mathbb{Z}_{n}\right|=n$, this immediately implies that $\left|A_{n, k}\right|=n$, regardless of the choice of k. A more interesting object, however, is a type of sum action over the elements in $A_{n, k}$.
Definition 1.2. For $n, k \in \mathbb{Z}^{+}$, define

$$
S_{n, k}:=\left\{\sum_{i=0}^{k-1}(\alpha+i)^{k} \quad \bmod n \mid \alpha \in \mathbb{Z}_{n}\right\} .
$$

$S_{n, k}$ is the $k^{\text {th }}$ sum set of \mathbb{Z}_{n}.

[^0]The $k^{\text {th }}$ sum set of \mathbb{Z}_{n} will be the primary focus of this paper. There are a few propositions that follow immediately: $\left|S_{1, k}\right|=1$ for all $k \in \mathbb{Z}$, and $\left|S_{n, 1}\right|=n$ for all $n \in \mathbb{Z}$ since, clearly, $S_{n, 1}=\mathbb{Z}_{n}$. Instances where $\left|S_{n, k}\right|=n$ are of particular interest, as regardless of choice of both n and k, we have $\left|S_{n, k}\right|=n \Longleftrightarrow S_{n, k}=\mathbb{Z}_{n}$.

To begin analyzing properties of these sum sets, we will first build some theory on sums in \mathbb{Z}_{n}.

Lemma 1.3. For $\alpha, \beta \in \mathbb{Z}_{n}$ and $k \in \mathbb{Z}^{+}$,

$$
\sum_{i=0}^{n-1}(\alpha+i)^{k} \equiv \sum_{i=0}^{n-1}(\beta+i)^{k} \quad \bmod n
$$

Proof. For $\alpha \in \mathbb{Z}_{n}$,

$$
\{\alpha+i \bmod n \mid 0 \leq i \leq n-1\}=\mathbb{Z}_{n}
$$

which immediately implies

$$
\sum_{i=0}^{n-1}(\alpha+i)^{k} \equiv \sum_{i=0}^{n-1}(\beta+i)^{k} \quad \bmod n
$$

This result provides a simple description of $S_{n, n}$ for $n \in \mathbb{Z}^{+}$, and will produce a description of $S_{n, k}$ when $n \mid k$.

Proof. Suppose $\alpha, \beta \in \mathbb{Z}_{n}$. Since $\alpha \equiv \alpha+n \bmod n$, we have

$$
|\{\alpha+i \bmod n \mid 0 \leq i \leq n-1\}|=n \quad \forall \alpha \in \mathbb{Z}_{n} .
$$

Since $\left|\mathbb{Z}_{n}\right|=n$, this also implies

$$
\{\alpha+i \bmod n \mid 0 \leq i \leq n-1\}=\{\beta+i \bmod n \mid 0 \leq i \leq n-1\},
$$

which further implies
$\left\{(\alpha+i)^{k} \bmod n \mid 0 \leq i \leq n-1\right\}$

$$
=\left\{(\beta+i)^{k} \bmod n \mid 0 \leq i \leq n-1\right\} \text { for } k \in \mathbb{Z}^{+} .
$$

Since both sets are equivalent, the sum over their respective elements will also be equivalent. Thus,

$$
\sum_{i=0}^{n-1}(\alpha+i)^{k} \equiv \sum_{i=0}^{n-1}(\beta+i)^{k} \quad \bmod n
$$

Proposition 1.4. For $n, k \in \mathbb{Z}^{+}$where $n>1$, if $n \mid k$, then $\left|S_{n, k}\right|=1$.
Proof. Suppose $n \mid k$. Then $k=m \cdot n$ for some $m \in \mathbb{Z}^{+}$. Now, consider

$$
S_{n, k}=\left\{\sum_{i=0}^{m n-1}(\alpha+i)^{m n} \quad \bmod n \mid \alpha \in \mathbb{Z}_{n}\right\} .
$$

For $\alpha \in \mathbb{Z}_{n}$, we have

$$
\begin{aligned}
\sum_{i=0}^{m n-1}(\alpha+i)^{m n} & =\sum_{i=0}^{m-1} \sum_{j=0}^{n-1}(\alpha+i \cdot n+j)^{m n} \\
& \equiv \sum_{i=0}^{m-1} \sum_{j=0}^{n-1}(\alpha+j)^{m n} \bmod n \\
& =m \sum_{i=0}^{n-1}(\alpha+i)^{m n} \bmod n
\end{aligned}
$$

However, by applying Lemma 1 , for all $\beta \in \mathbb{Z}_{n}$,

$$
m \sum_{i=0}^{n-1}(\alpha+i)^{m n} \equiv m \sum_{i=0}^{n-1}(\beta+i)^{m n} \quad \bmod n
$$

Thus, $\left|S_{n, k}\right|=1$.

2. Results

Now that some preliminary results have been established, we can begin to examine specific values of n to find values of k such that $\left|S_{n, k}\right|=n$.
Proposition 2.1. For $k \in \mathbb{Z}^{+},\left|S_{3, k}\right|=3$ if and only if

$$
k= \begin{cases}3 t+1, & t \text { is even } \\ 3 t+2, & t \text { is odd }\end{cases}
$$

Proof. Either $k=3 t, k=3 t+1$ or $k=3 t+2$. If $k=3 t$, by Proposition $1,\left|S_{3,3 t}\right|=1$. Before we consider the remaining cases, note that in \mathbb{Z}_{3},

$$
0^{m}+1^{m}+2^{m} \equiv\left\{\begin{array}{lll}
2 & \bmod 3, & m \text { is even } \\
0 & \bmod 3, & m \text { is odd }
\end{array}\right.
$$

First, let $k=3 t+1$. Then there are three such general instances: first, the sequence starts at 0 , ends at $0(\mathbf{1})$, second, starts at 1 , ends at 1 (2), and third, starts at 2 , ends at 2 (3). For (1), we have

$$
0^{k}+1^{k}+2^{k}+0^{k}+\ldots+1^{k}+2^{k}+0^{k} \equiv\left\{\begin{array}{lll}
2 t & \bmod 3, & k \text { is even } \\
0 & \bmod 3, & k \text { is odd }
\end{array}\right.
$$

For (2), we have

$$
1^{k}+2^{k}+0^{k}+1^{k}+\ldots+2^{k}+0^{k}+1^{k} \equiv \begin{cases}2 t+1 \bmod 3, & k \text { is even } \\ 1 \bmod 3, & k \text { is odd }\end{cases}
$$

For (3), we have

$$
2^{k}+0^{k}+1^{k}+2^{k}+\ldots+0^{k}+1^{k}+2^{k} \equiv \begin{cases}2 t+1 \bmod 3, & k \text { is even } \\ 2 \bmod 3, & k \text { is odd }\end{cases}
$$

Clearly, if $k=3 t+1$, then $\left|S_{3, k}\right|=3$ if and only if k is odd, which implies that t is even.
Next, let $k=3 t+2$. Then there are again three general instances: first, the sequence starts at 0 , ends at 1 (1), second, starts at 1 , ends at $2(2)$, and third, starts at 2 , ends at 0 (3). For (1), we have

$$
0^{k}+1^{k}+2^{k}+0^{k}+1^{k}+\ldots+2^{k}+0^{k}+1^{k} \equiv \begin{cases}2 t+1 \bmod 3, & k \text { is even } \\ 1 \bmod 3, & k \text { is odd }\end{cases}
$$

For (2), we have

$$
1^{k}+2^{k}+0^{k}+1^{k}+2^{k}+\ldots+0^{k}+1^{k}+2^{k} \equiv \begin{cases}2(t+1) \bmod 3, & k \text { is even } \\ 0 \bmod 3, & k \text { is odd }\end{cases}
$$

For (3), we have

$$
2^{k}+0^{k}+1^{k}+2^{k}+0^{k}+\ldots+1^{k}+2^{k}+0^{k} \equiv \begin{cases}(2 t+1) \bmod 3, & k \text { is even } \\ 2 \bmod 3, & k \text { is odd } .\end{cases}
$$

Clearly, if $k=3 t+2$, then $\left|S_{3, k}\right|=3$ if and only if k is odd, which implies t is odd.
It is of interest to find some criterion by which $\left|S_{n, k}\right|=n$ is immediate. From the above result, it is evident that no even value of k satisfies $\left|S_{3, k}\right|=3$, which is a special case of our next result.

Proposition 2.2. For $n, k \in \mathbb{Z}^{+}$where $n>1$, if $2 \mid k$, then $\left|S_{n, k}\right|<n$.
Proof. For $k \in \mathbb{Z}^{+}$, suppose $2 \mid k$. First, note that since k is even,

$$
\begin{equation*}
(\alpha)^{k} \equiv(-\alpha)^{k} \quad \bmod n \quad \forall \alpha \in \mathbb{Z}_{n} \tag{2.1}
\end{equation*}
$$

It suffices to show that $\exists \alpha, \beta \in \mathbb{Z}_{n}$ distinct such that

$$
\begin{equation*}
\sum_{i=0}^{k-1}(\alpha+i)^{k} \equiv \sum_{i=0}^{k-1}(\beta+i)^{k} \bmod n . \tag{2.2}
\end{equation*}
$$

First, suppose $1 \not \equiv(-k) \bmod n$. Then by (1), we have

$$
(1)^{k}+\ldots+(k)^{k}=(-k)^{k}+\ldots+(-1)^{k} .
$$

Using $\overline{-k} \equiv-k \bmod n$ where $\overline{-k} \in\{0, \ldots, n-1\}$, we have

$$
\sum_{i=0}^{k-1}(1+i)^{k} \equiv \sum_{i=0}^{k-1}(\overline{-k}+i)^{k} \quad \bmod n
$$

meaning 1 and $\overline{-k}$ satisfy (2). But $1 \not \equiv \overline{-k} \bmod n$, so we are done.
Next, suppose $1 \equiv(-k) \bmod n$. Then

$$
1+k \equiv 0 \quad \bmod n \Rightarrow n \text { is odd and } k \equiv n-1 \quad \bmod n .
$$

This also means $n>2$, so consider distinct elements $0,2 \in \mathbb{Z}_{n}$. We have

$$
\sum_{i=0}^{k-1}(i)^{k}=(0)^{k}+(1)^{k}+(2)^{k}+\ldots+(k-1)^{k}
$$

and

$$
\begin{aligned}
\sum_{i=0}^{k-1}(2+i)^{k} & =(2)^{k}+\ldots+(k-1)^{k}+(k)^{k}+(k+1)^{k} \\
& \equiv(2)^{k}+\ldots+(k)^{k}+(0)^{k} \bmod n
\end{aligned}
$$

However, since $(1)^{k} \equiv(-k)^{k} \equiv(k)^{k} \bmod n$, we have

$$
\sum_{i=0}^{k-1}(i)^{k} \equiv \sum_{i=0}^{k-1}(2+i)^{k} \bmod n
$$

or that $0,2 \in \mathbb{Z}_{n}$ satisfy (2). But $0 \not \equiv 2 \bmod n$, meaning we can conclude that if $2 \mid k$, then $\left|S_{n, k}\right|<n$ for $n>1$.

Next, we will prove a result for $k^{\text {th }}$ sum sets of \mathbb{Z}_{p} where $p \in \mathbb{Z}^{+}$is prime
Proposition 2.3. If $p, t \in \mathbb{Z}^{+}$where p is prime, $k=p t-(t-1)$, and $p \nmid k$, then $\left|S_{p, k}\right|=p$.
Proof. For $\alpha \in \mathbb{Z}_{p} \backslash\{0\}$, since $\alpha^{p} \equiv \alpha \bmod p$, we have

$$
\begin{aligned}
\alpha^{p t-(t-1)} & \equiv \alpha^{p t} \cdot \alpha^{1-t} \\
& \equiv \alpha^{t} \cdot \alpha^{1-t} \\
& \equiv \alpha \quad \bmod p
\end{aligned}
$$

Since $(0)^{p t-(t-1)}=0$, we have that $\alpha^{p t-(t-1)} \equiv \alpha \bmod p$ for all $\alpha \in \mathbb{Z}_{p}$.
Therefore, for $\alpha \in \mathbb{Z}_{p}$, we have

$$
\sum_{i=0}^{t(p-1)}(\alpha+i)^{t(p-1)+1} \equiv \sum_{i=0}^{t(p-1)} \alpha+i \quad \bmod p=\sum_{i=0}^{t(p-1)} \alpha+\sum_{i=0}^{t(p-1)} i
$$

The second term is constant, meaning we need only consider the first term. We have

$$
\sum_{i=0}^{t(p-1)} \alpha=\alpha(t(p-1)+1)
$$

Since $k=t(p-1)+1 \not \equiv 0 \bmod p$ and \mathbb{Z}_{p} is a field, we obtain that $\left|\left\{\alpha k \mid \alpha \in \mathbb{Z}_{p}\right\}\right|=p$. Thus,

$$
\left|S_{p, k}\right|=p
$$

3. Conclusion

Note that this does not provide every k such that $\left|S_{p, k}\right|=p$ for some prime p. Experimental data suggests that for most primes p, the smallest non-trivial k such that $\left|S_{p, k}\right|=p$ is of the form $k=2 p-1$, or the $t=2$ instance of the above proposition. However, this is not true for all primes. For instance, we have that $\left|S_{23,5}\right|=23$ and $\left|S_{37,7}\right|=37$, meaning that $k=2 p-1$ is not the smallest non-trivial value to have that property. This leads to an interesting open question: for $n \in \mathbb{Z}^{+}$, what is the smallest non-trivial $k \in \mathbb{Z}^{+}$such that $\left|S_{n, k}\right|=n$?

Another open problem that has not been resolved is that of the instance when $4 \mid n$. The following has been conjectured through experimental data:

Conjecture 3.1. For $n, k \in \mathbb{Z}^{+}$, if $4 \mid n$, then $\left|S_{n, k}\right|<n$ for $k>1$.

Again through experimental data, the following conjecture suggests the strongest characterization yet of our main problem:
Conjecture 3.2. For $n, k \in \mathbb{Z}^{+}$, if $\left|S_{n, k}\right|=n$ and $t=n(n-1)+k$, then $\left|S_{n, t}\right|=n$.
This conjecture is immediately true for $S_{p, k}$ where p is prime by using similar techniques from the proof of Proposition 4. However, the general case has not yet been proven. This conjecture would immediately imply that, given $n \in \mathbb{Z}^{+}$, every instance where $\left|S_{n, k}\right|=n$ can be determined by testing finitely many $k \in \mathbb{Z}^{+}$.

Acknowledgement. This research was supported by NSF Grant No. 1950563.

References

[1] Chungwu Ho, Gregory Mellblom, \& Marc Frodyma, On the sum of powers of consecutive integers, The College Mathematics Journal, 2020, 51(4), 295-301.

[^0]: *Corresponding Author.
 Email addresses: nathan.jonesviolin@uky.edu
 Received: January 2, 2023; Accepted: March 1, 2023

