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Abstract

The spider and the fly are sitting in the coordinate plane. The spider’s coordinates are
(2018, 6903) and the fly sits at (2561, 2353). The spider is no ordinary spider. It discreetly
spins its web by moving in four different directions. Starting from a point with integer
coordinates (a, b), the spider can jump to (a + b, b), (a − b, b), (a, b + a), or (a, b − a). The
fly is terrified and sits perfectly still. Will the spider ever catch the fly?

After we present and represent the spider group we look at the spider’s orbit and count the
prime locations. Finally, the spider’s moves reveal a surprising connection with modular
representation theory of algebraic groups.
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Will you walk into my parlour, said a Spider to a Fly;

- Mary Howett (1799 – 1888)

Then I said my, my, like a spider to a fly

Jump right ahead in my web.

- Mick Jagger, Keith Richards

1. Introduction

This article is based on my Lewis Parker Lecture that was presented on March 2, 2019
at Huntingdon College. I would like to thank the AACTM for inviting me. I greatly
enjoyed the meeting. The following write-up starts with one of my favorite problems from
the Mobile Mathematics Circle, visits some fundamental ideas in group theory, encounters
some recent results and open problems in number theory, and finally weaves its way into my
area of research, modular representation theory of finite groups of Lie type and algebraic
groups.
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This is an expository article. There are no proofs and no original ideas. I tried not to
get lost in technical details (except possibly in Section 3). Hopefully, the reader will be
able to get a flavor of the rich mathematics that lies below it all. In the end it is really
just about SL2(Z).

2. Problems from the Mobile Mathematics Circle

More than 20 years ago my colleagues Vasiliy Prokhorov and Dan Flath started the
Mobile Math Circle, a weekly event for local high school and middle school students, who
solve math problems under the guidance of professional mathematicians. I have been
leading sessions of the Math Circle for many years and one of my favorite problems is the
following:

Spider and Fly: The spider and the fly are sitting in the coordinate plane. The

spider’s coordinates are (2018, 6903) and the fly sits at (2561, 2353). The spider is no

ordinary spider. It discreetly spins its web by moving in four different directions. Starting

from a point with integer coordinates (a, b), the spider can jump to (a + b, b), (a − b, b),
(a, b+a), or (a, b−a). The fly is terrified and sits perfectly still. Will the spider ever catch

the fly?

The answer of course is either “yes” or “no”. We have a 50% chance of getting it right. But
we are mainly interested in finding a justification of our answer. To simplify the problem,
let us consider some smaller numbers for the starting positions. Let the spider start at
(2, 3) and the fly sits at (6, 2). Will the spider ever reach the fly? We don’t care how many
jumps it might take. The picture below illustrates the situation.
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This is a classical invariant problem. All the possible points that the spider can
reach will have one common value, the invariant. The observant reader probably rec-
ognized that the invariant is the greatest common divisor (gcd) of the initial position
(2, 3), namely 1. More generally, a spider sitting at (a, b) can only reach points (c, d) with
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gcd(a, b) = gcd(c, d). The reason is a well-known fact from elementary number theory: If
not both, a and b, are equal to zero, then gcd (a, b) = gcd (a, a + b).
Borrowing a term from group theory one can show that the orbit of a spider starting at
(a, b), i.e. the set of all points that the spider can reach, is

O(a, b) = {(c, d) ∈ Z × Z | gcd(a, b) = gcd(c, d)}.

Since the gcd (6, 2) = 2 6= 1, we see that the fly in our example is perfectly safe. I will
leave it to the reader to find a solution to the originally stated problem (without using
a calculator or computer). Consulting a spider that spent some time in Euclid’s house
might be helpful here.

There is an interesting variation of the above theme. This time we are dealing with a
rational spider.

The Rational Spider: If the rational spider sits at a rational point a
b

on the posi-

tive part of the number line it can jump either to the point a+b
b

or to the point a
a+b

. Are

there any points on the positive part of the number line for a fly to hide, if the rational

spider sits at 1?

Finally, I would like to mention a game that we like to play and explore during our
Math Circle sessions. The game was invented by Cole and Davie [3].

Euclid’s Game A pair of positive numbers is written on the board. Two players move

alternately, subtracting from the greater entry a positive integer multiple of the smaller

one, as long as the result remains positive. The player who is unable to make a move

loses. Is there a winning strategy?

I want to conclude this section with the picture below. It shows the part of the orbit
of a spider starting at (1, 1) that lies in the first quadrant. Squares that the spider can
reach are dark and squares that are safe for a fly are light. Do you recognize any patterns
or symmetries?
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3. The Free Spider Group, Presentations and Representations

In this section we want to explore the movement of the spider using the language of
group theory. Please note that the exposition tries to give a flavor of the underlying
mathematics rather than being a rigorous introduction.

3.1. The Free Spider Groups

Recall the “spider moves”. The move that adds the second coordinate to the first
coordinate is denoted by X :

(a, b)
X
−→ (a + b, b)

The move that subtracts the second coordinate to the first coordinate is denoted by X−1.

(a, b)
X−1

−−−→ (a − b, b)

Note that this notation makes sense because X−1 undoes X. It is the inverse.

(a, b)
X
−→ (a + b, b)

X−1

−−−→ (a, b) and (a, b)
X−1

−−−→ (a − b, b)
X
−→ (a, b).

Similarly, we introduce the moves Y and Y −1 such that

(a, b)
Y
−→ (a, a + b)

Y −1

−−−→ (a, b) and (a, b)
Y −1

−−−→ (b, b − a)
Y
−→ (a, b).

A “spider path” is just a sequence of moves that can be described as a word made from
the letters X, Y and their inverses X−1, Y −1. Whenever a letter is followed by its inverse
or follows its inverse we can omit the pair. For example

Y XY −1XY −1XX−1Y X−1Y = Y XY −1XY −1 (XX−1) Y X−1Y

can be simplified to

Y XY −1X (Y −1Y ) X−1Y = Y XY −1 (XX−1) Y = Y X (Y −1Y ) = Y X.

We call the last expression a reduced word because no further cancellations are possible.
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The Free Spider Group G is defined to be the set of all reduced words in X, Y and
their inverses, X−1, Y −1, together with the binary operation “pasting words together”,
followed by reductions, if possible. The identity is the empty word.
Here is an example. “Multiplying” the word XY −1XXY by Y −1X−1Y Y X−1 yields:

(XY −1XXY ) · (Y −1X−1Y Y X−1) = XY −1X (X(Y Y −1)X−1) Y Y X−1

= XY −1XY Y X−1

3.2. Spider Actions and Presentations

But does the Free Spider Group really capture the spider’s movements?
We say the group G acts on the set {(a, b) | a, b ∈ Z} as follows.

X · (a, b) = (a + b, b) and Y · (a, b) = (a, a + b).

Note that

X−1 · (a, b) = (a − b, b), Y −1 · (a, b) = (a, b − a), and (vw) · (a, b) = v · (w · (a, b)),

for all words v and w. We call this a group action.
Let us have a look at the action of various words. Where does the word Y X−1Y send

a spider sitting at (a, b)?

The Answer: (a, b)
Y
−→ (a, a + b)

X−1

−−−→ (−b, a + b)
Y
−→ (−b, a)

The following shows that the path corresponding to the word (Y X−1Y )4 sends every
spider back to the point at which it started.

(a, b)
Y X−1Y
−−−−−→ (−b, a)

Y X−1Y
−−−−−→ (−a, −b)

Y X−1Y
−−−−−→ (b, −a)

Y X−1Y
−−−−−→ (a, b).

Exercise: Show that the path corresponding to the word (Y −1X)3 leads to the same
location as the one corresponding to (Y X−1Y )2.

We would like to find a new group where distinct elements result in distinct “spider
paths” and every “spider path” corresponds to an element. The above observations tell
us that whenever we have a word in the free spider group that contains the sub-word
(Y X−1Y )4 we can simply delete the sub-word. Similarly, we can always replace the sub-
word (Y −1X)3 by (Y X−1Y )2 and vice versa. Such rules are called relations. Using our
original generators X and Y we describe a new group H as follows:

H = 〈 X, Y
︸ ︷︷ ︸

generators

| (Y X−1Y )4 = 1, (Y −1X)3 = (Y X−1Y )2

︸ ︷︷ ︸

relations

〉

We call this a presentation of H.
If one chooses S = Y X−1Y and U = Y −1X, one may rewrite the above in a simplified

form as

H = 〈 S, U
︸︷︷︸

generators

| S4 = 1, U3 = S2

︸ ︷︷ ︸

relations

〉.

At this point it could be quite possible that there are more relations that we have not
seen. We will have to take a second look at the spider actions.

3.3. Representations

Is there a better way of describing the spider action? We start with some cosmetic
changes, switching to column vectors. Recall that

X ·

[
a

b

]

=

[
a + b

b

]

and that Y ·

[
a

b

]

=

[
a

a + b

]

.
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That would suggest that

X ·

[
a

b

]

=

[
1 1
0 1

] [
a

b

]

and that Y ·

[
a

b

]

=

[
1 0
1 1

] [
a

b

]

This observations suggest a map from the Free Spider Group to the set of invertible 2 × 2
matrices with integer entries. Indeed, we define φ : G → GL2(R) via

φ(X) =

[
1 1
0 1

]

and φ(Y ) =

[
1 0
1 1

]

.

Moreover, we want that φ(v · w) = φ(v)φ(w), for any pair of words v, w ∈ G. The map φ

is a group homomorphism. We call this a representation of G. Jim Humphreys writes in
[4] “A representation provides a sort of picture of G: in place of abstract group elements,
multiplied abstractly, we get concrete matrices, multiplied in a familiar way”.

Exercises: Find φ((Y X−1Y )4), φ((Y −1X)3) and φ((Y X−1Y )2).
It turns out that φ((Y X−1Y )4) is simply the identity matrix and that φ((Y −1X)3) =

φ((Y X−1Y )2). This implies that one actually obtains a representation not just of of G

but also of H.
A natural question to ask is: What is the image or the range of φ? Any matrix that is

contained in the image of φ is a product of the matrices
[

1 1
0 1

]

,

[
1 0
1 1

]

,

[
1 −1
0 1

]

,

[
1 0

−1 1

]

.

All of these have determinant one and integer entries. The image of φ is therefore contained
in SL2(Z), the set of 2 × 2 integer matrices with determinant 1.

Do we get all the matrices in SL2(Z)? Indeed, we do. One can find a simple argument
using elementary matrices. Without proof I will list some “spider facts” that show that
the group of “spider paths” is indeed the group SL2(Z).

• There is a one-to-one correspondence between the “spider paths” and the elements
of SL2(Z).

• H is isomorphic to SL(2,Z), or equivalently,

〈 X, Y | (Y X−1Y )4 = 1, (Y −1X)3 = (Y X−1Y )2 〉 and 〈 S, U | S4 = 1, U3 = S2 〉

are presentation of SL2(Z) (For more detail see [5]).

We have now seen that the movements of the spider that we encountered in the Math
Circle can be best described via the group SL2(Z), a group that features prominently in
many areas of mathematics, especially in number theory.

4. Prime Locations

In this section we will recall some well-known facts from number theory and quote a
fairly recent theorem. These observations lead to surprising results in modular repre-
sentation theory of algebraic groups. These will be discussed in the last section of the
paper.

Let us consider a spider that is out for an infinite walk.

(1, 0)
Y
−→ (1, 1)

X
−→ (2, 1)

Y
−→ (2, 3)

X
−→ (5, 3)

Y
−→ (5, 8)

X
−→ (13, 8)

Y
−→ ....

The reader might recognize that the coordinates of the points visited by the spider along
this infinite path contain the Fibonacci numbers. A theorem dating back to 1913 by the
American mathematician Carmichael says the following:
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Theorem 4.1 (R. D. Carmichael). For n greater than 12, the nth Fibonacci number has

at least one prime factor that does not divide any earlier Fibonacci number.

Carmichael was born in Goodwater, Alabama, and spent most of his academic career
at the University of Illinois. Carmichael’s Theorem implies that, for n sufficiently large,
the first n Fibonacci numbers have at least n distinct prime divisors. For the spider this
implies that, for large n, after the first n steps of its stroll every step will let it visit a
point whose coordinates produce a new prime factor.

It is still an open question whether infinitely many Fibonacci numbers are prime. So
we don’t know whether our spider will actually visit infinitely many “prime locations”.
However, if we allow for “spider paths” that correspond to arbitrary words in X and Y

we can do a lot better.
A recent theorem due to Kontorovich, McNamara and Williamson [7, Appendix] shows

that for sufficiently large n there exist “spider paths” of length at most n in X and Y

(no inverses) that produce not only prime factors but actual primes. Not only do these
primes grow exponentially in terms of the path length n but the number of such primes
also grows exponentially. Here is a slightly reworded statement of the theorem.

Theorem 4.2 (A. Kontorovich, P. J. McNamara and G. Williamson). There exist absolute

constants τ > 0 and c > 1 such that, for all n large, there exists a word w in X and Y of

length at most n with w · (1, 0) = (p, ∗), where p is a prime and p > τcn. Moreover,

#{ primes p > τcn | ∃ a path w of length ≤ n with w · (1, 0) = (p, ∗)} ≫
cn

n
.

The notation f(n) ≫ g(n) means that |g(n)| ≤ M |f(n)| for a fixed 0 < M and large n.

5. Modular Representation Theory

Fix a prime p. We denote by Fp the field with p elements and by k an algebraically
closed field containing Fp. In this section we want to look at finite-dimensional modular
representations of finite groups of Lie type, algebraic groups, and Lie algebras.

We limit the exposition to the following examples: SLn(Fp), the finite group consisting
of all n × n matrices with entries in Fp and determinant one, SLn(k), the algebraic group
consisting of all n × n matrices with entries in k and determinant one, and sln(k), the Lie
algebra consisting of all n × n matrices with entries in k and trace zero. Our particular
interest lies in representations of SLn(Fp) in the defining characteristic p, i.e., group homo-
morphisms ρ : SLn(Fp) → GLm(k), or equivalently, linear group actions of SLn(Fp) on an
m-dimensional k-vector space V . Such a space V is also referred to as a SLn(Fp)-module.

In this setup there are two fundamental questions. What are the irreducible or simple
objects? Simple modules are modules that have no non-trivial proper subspaces that are
invariant under the group action. These are the smallest building blocks from which other
modules can be built. Unlike linear actions of finite groups on finite-dimensional C-vector
spaces, where every module is simply a direct sum of simples, modular representation
theory allows for more complicated structures to be built out of these smallest building
blocks. This leads to the second fundamental question: How and when can we “stick” two
simple objects together? This leads to the study of cohomology. The two questions are
closely connected. The two mathematicians in the picture below successfully constructed
an indecomposable module out of simple objects, each represented by a single piece of
lego.
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In general the dimensions and characters of the simple SLn(Fp)-modules are not known.
What we do know is that they are restrictions of a finite subset of the simple objects of the
larger algebraic group SLn(k) and that the restriction of this same subset to the Lie algebra
sln(k) also yields a complete set of simples. Moreover, the cohomology for SLn(Fp) can
often be obtained via cohomology data coming from the algebraic group, see for example
[2].

One might also ask oneself: How are the representation theories of the groups SL5(F17)
and SL5(F53) related? Is there a general theory that is independent of the underlying
prime?

We will concentrate now on the algebraic groups SLn(k). As mentioned above, dimen-
sions and characters of the simple modules are in general unknown. There is a second class
of modules whose dimensions and characters are known. In some sense these modules, we
will refer to them as standard modules, come from the classical representation theory over
the complex numbers and the information can easily be obtained via Weyl’s well-known
character formula. The problem of finding the dimensions of the simple modules is now
equivalent to finding the multiplicities of a simple appearing as a composition factor (as a
piece of lego) in the larger standard module. Inverting this data leads to expressions of the
characters of simple module as Z-linear combinations of the known characters of the stan-
dard modules. In 1979 George Lusztig conjectured that, provided the prime is sufficiently
large, the coefficients of such a Z-linear combination are given by affine Kazhdan-Lusztig
polynomials [6]. As a consequence of this conjecture the behavior would indeed be in-
dependent of the underlying prime. For the case of SLn(k) Lusztig originally proposed
conjecture would result in a bound of p ≥ 2n − 3. Later further evidence was found that
suggested his conjecture should hold for all p > n.

In 1994 Andersen, Jantzen and Soergel [1] showed that Lusztig’s conjecture holds for
arbitrarily large primes, without giving any bound on p. The bound p > n had been verified
for n ≤ 5. For larger n the dimensions of the modules and the resulting complexities of
the necessary calculations make it virtually impossible to produce more numerical data.
Proving Lusztig’s conjecture has been the holy grail in modular representation theory for
the last 40 years.

Therefore, it came as a shock to the research community when Geordie Williamson
announced in 2013 that no linear bound for p in terms of n is sufficient for Lusztig’s
conjecture to hold [7]. Moreover, he showed that for sufficiently large n one can always
produce exponentially large (in terms of n) counterexamples to the expected bounds in
Lusztig’s conjecture.
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The methods developed and applied by Williamson and his collaborators are extremely
sophisticated and come from geometric representation theory. Explaining them would
go way beyond the scope of this article and way beyond the capabilities of its author.
However, in the end the fact that no linear bound exists is a consequence of Carmichael’s
Theorem and the existence of exponentially large counterexamples to Lusztig’s conjecture
arise from the fact that a “spider path” of length n will visit exponentially many, exponen-
tially large primes (again in terms of n). For more details we refer the interested reader
to [7].

The spider will rest now.

Sittin’, thinkin’, sinkin’, drinkin’,

Wondering what I’ll do when I’m through tonight.

- Mick Jagger, Keith Richards

References

[1] H.H.Andersen, J.C.Jantzen, W.Soergel. Representations of quantum at a pth root of

unity and of semisimple groups in characteristic p: independence of p, Astérisque.
220 (1994), 321 pp.

[2] C.P.Bendel, D.K.Nakano, C.Pillen. Extensions for finite Chevalley groups II, Trans.

Amer. Math. Soc. 354(11) (2002) 4421–4454.
[3] A.J.Cole, A.J.T.Davie. A Game Based on the Euclidean Algorithm and a Winning

Strategy for It, Math. Gaz. 53 (1969), 354–357.
[4] J.E.Humphreys. Representations of SL(2, p), Amer. Math. Monthly. 82 (1975), 21–39.
[5] C.Kassel, V.Turaev. Presentations of SL2(Z) and PSL2(Z), Braid Groups, Graduate

Texts in Mathematics, vol 247, Springer, New York, NY. (2008), 311–314. https:

//doi.org/10.1007/978-0-387-68548-9_8

[6] G.Lusztig. Some problems in the representation theory of finite Chevalley groups,
The Santa Cruz Conference on Finits Groups (Univ. California, Santa Cruz, Calif.,
1979), Proc. Sympos. Pure Math., vol. 37, Amer. Math. Soc., Providence, R.I. (1980),
313-317.

[7] G.Williamson. Schubert calculus and torsion explosion. With a joint appendix with
Alex Kontorovich and Peter J. McNamara. J. Amer. Math. Soc. 30(4) (2017) 1023–
1046.


