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Abstract
Let G be a graph with average degree greater than k− 2. Erdős and Sós conjectured that
G contains every tree on k vertices. The conjecture is known to be true for values of k up
to 8. In this paper, we prove that the Erdős and Sós conjecture holds for k = 9.
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1. Introduction
The average degree of a graph G, denoted d̄(G), is 2|E(G)|/|V (G)|. Erdős and Gallai

[5] proved that if d̄(G) > k−2, then G contains a path on k vertices. Subsequently, Erdős
and Sós made the following conjecture:
Erdős-Sós Conjecture. If G is a graph with d̄(G) > k − 2, then G contains every tree
on k vertices.

Various special cases of the conjecture have been proven. Many place restrictions on
the graph G. The cases where the graph G has a number of vertices k, k+1, or k+2, were
proved by Zhou [13], Slater, Teo, and Yap [8], and Woźniak [11], respectively. The cases
where G has a number of vertices k+ 3 or k+ 4 were proved by Tiner [10], and Yuan and
Zhang [12], respectively. Eaton and Tiner [4] proved the conjecture holds if a longest path
in the graph G has at most k + 3 vertices. In as early as 2003, Simonovits [1] announced
a proof of the Erdős-Sós Conjecture for all sufficiently large values of k (joint work with
Ajtai, Komlós, and Szemerédi).

Other cases that have been proven place restrictions on the class of trees. Sidorenko
[7] proved the conjecture holds for every tree with a vertex having at least dk

2e − 1 leaf-
neighbors. Eaton and Tiner [3] proved the following improvement:
Theorem 1.1. If G is a graph with d̄(G) > k−2, then G contains every tree on k vertices
having a vertex with at least dk

2e − 2 leaf neighbors.
A spider is a tree with one vertex of degree at least 3, called the center, and all others

with degree at most 2. Fan, Hong, and Liu [2] proved the following:
Theorem 1.2. If G is a graph with d̄(G) > k − 2, then G contains every spider on k
vertices.
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The diameter of a tree T , or diam(T ), is the number of edges on a longest path in T .
McLennan [6] proved the following:

Theorem 1.3. If G is a graph with d̄(G) > k−2, then G contains every tree on k vertices
that has diameter at most 4.

A double-broom is a tree that contains a path a1, . . . , ar, where each vertex not on the
path is adjacent to either the vertex a1 or ar. Notice that a path is a double-broom. Tiner
[9] proved the following:

Theorem 1.4. If G is a graph with d̄(G) > k − 2, then G contains every double-broom
on k vertices.

Let G be a graph. For A ⊆ V (G), the number of edges with at least one endpoint in A
is e∗G(A), or simply e∗(A). A proof of the following lemma is in [3]:

Lemma 1.5. Let G be a graph with d̄(G) > k − 2. Let W ⊆ V (G) and G′ = G −W . If
e∗(W ) ≤ 1

2(k − 2)|W |, then d̄(G′) > k − 2.
The minimum degree among all vertices in G is δ(G). For a natural number m, a graph
G is minimal with d̄(G) > m if d̄(G′) ≤ m whenever G′ is a proper subgraph of G. The
following corollary follows from Lemma 1.5:
Corollary 1.6. Let G be a graph that is minimal with d̄(G) > k − 2. If W ⊆ V (G), then
e∗(W ) > 1

2 |W |(k−2), and δ(G) ≥ bk
2c. Furthermore, for odd k, if uv ∈ E(G), then either

u or v has degree at least bk
2c+ 1.

If ab ∈ E(G), then the vertex a hits b; otherwise, a misses b. Let C,D ⊆ V (G). A
vertex v hits C if there is a vertex c in the set C such that vc ∈ E(G). The set D hits C
if a vertex d ∈ D hits C.

Eaton and Tiner [3] showed that the Erdős-Sós Conjecture holds for values of k at most
8. In this paper, we prove that the conjecture holds for k = 9.

For k = 9, the graph G in Corollary 1.6 has d̄(G) > 7. This implies that δ(G) ≥ 4.
Furthermore, for u, v ∈ V (G), if the vertex u hits v, then either u or v has degree at least
5.

2. Proof of the main theorem

Theorem 2.1. If G is a graph with d̄(G) > 7, then G contains every tree on 9 vertices.

Proof. If a subgraph G′ of G that is minimal with d̄(G′) > 7 contains every tree on 9
vertices, then so does G. For this reason, we will simply assume that the graph G is
minimal with d̄(G) > 7. By Corollary 1.6, this implies that δ(G) ≥ 4, and if uv ∈ E(G),
then either u or v has degree at least 5.

Let T be a tree on 9 vertices, and notice that the diameter of T is at least 2 and at
most 8. If diam(T ) ≤ 4, then the graph G contains T (by Theorem ??).

Otherwise, 5 ≤ diam(T ) ≤ 8. If T has diameter 8, then T is a double-broom (more
specifically a path), and G contains T (by Theorem 1.4). If T has diameter 7, then T is a
spider, and G contains T (by Theorem 1.2).

Otherwise, 5 ≤ diam(T ) ≤ 6. We leave it to the readers to convince themselves that
there are exactly eight trees of diameter 5, and exactly five trees of diameter 6, that are
not already known to be in the graph G using Theorems 1.1 through 1.4. We label the
13 trees T1 through T13, where trees T1 through T8 have diameter 5, and trees T9 through
T13 have diameter 6. We will prove that each one of the trees T1 through T13 is contained
in G as a subgraph.

There are two main cases in our proof: Case 1 deals with trees of diameter 5, and Case
2 deals with trees of diameter 6. In the eight subcases of Case 1 (i.e., Cases 1.1 through
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1.8), we prove that G contains the eight trees of diameter 5; and in the five subcases of
Case 2 (i.e., Cases 2.1 through 2.5), we prove that G contains the five trees of diameter 6.
In the title of each subcase, we define the tree Ti that will be proven to be in the graph G.
Below each title is an image of the tree. In each proof, we state a tree T ′ that is already
known to be in the graph G. We will then use T ′ and properties of the graph to prove
that G contains Ti.
Case 2.2. Trees of diameter 5.

Let P be a path, where P = v1, v2, v3, v4, v5, v6. Since each of the trees T1 through T8
in this case has diameter 5, we will use the path P in the definition of each tree. The
remaining three vertices used in each tree definition will be x, y, and z, and the three
remaining edges will be stated in each case.
Case 2.2.1. T1 = P + {v2x, v3y, v4z}

Let T ′ ⊆ G be the tree u1, u2, u3, u4, u5 + {u2a, u3b, u4c, u4d} in G. We know that T ′ is
a subgraph of G since diam(T ′) = 4 (by Theorem ??). Let X = V (G)− V (T ′).

If two of the vertices in {u5, c, d} share an edge, then assume the vertex u5 hits d. It
follows that u1, u2, u3, u4, u5, d+ {u2a, u3b, u4c} is T1 in G.

Otherwise, no two vertices in {u5, c, d} share an edge. If {u5, c, d} hits X, then assume
the vertex u5 hits x ∈ X. It follows that u1, u2, u3, u4, u5, x+ {u2a, u3b, u4c} is T1 in G.

Otherwise, {u5, c, d} misses X. If {u5, c, d} hits {u1, a}, then assume the vertex d hits
u1. Thus, u5, u4, u3, u2, u1, d+ {u4c, u3b, u2a} is T1 in G.

Otherwise, {u5, c, d} misses {u1, a}. Since δ(G) ≥ 4, this implies that the neighborhood
of each vertex in {u5, c, d} is {u2, u3, u4, b}, and u1, u2, u3, u4, u5, b+ {u2a, u3c, u4d} is T1
in G.
Case 2.2.2. T2 = P + {v2x, v3y, v5z}

Let T ′ ⊆ G be the tree u1, u2, u3, u4, u5 + {u2a, u2b, u2c, u4d} in G. We know that T ′ is
a subgraph of G since diam(T ′) = 4 (by Theorem ??). Let X = V (G)− V (T ′).

If a vertex in {u1, a, b, c} hits at least two vertices in X ∪ {u1, a, b, c}, then assume the
vertex u1 hits both a and b. It follows that a, u1, u2, u3, u4, u5 + {u1b, u2c, u4d} is T2 in G.

Otherwise, no vertex in {u1, a, b, c} hits two vertices in X ∪{u1, a, b, c}. Since δ(G) ≥ 4,
this implies that each vertex in {u1, a, b, c} hits at least two vertices in {u3, u4, u5, d}. If
two vertices in {u1, a, b, c} hit the vertex u3, then assume a and b hit u3. It follows that
u5, u4, u3, a, u2, u1 + {u4d, u3b, u2c} is T2 in G.

Otherwise, at most one vertex in {u1, a, b, c} hits u3. Assume {u1, b, c} misses u3. Thus,
each vertex in {u1, b, c} hits at least two vertices in {u4, u5, d}. This implies that either
two vertices in {u1, b, c} hit u5 or two vertices in {u1, b, c} hit d; assume that vertices b
and c both hit u5. It follows that c, u5, u4, u3, u2, u1,+{u5b, u4d, u2a} is T2 in G.
Case 2.2.3. T3 = P + {v2x, v3y, v3z}
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Let T ′ ⊆ G be the tree u1, u2, u3, u4, u5 + {u2a, u3b, u3c, u4d} in G. We know that T ′ is
a subgraph of G since diam(T ′) = 4 (by Theorem ??). Let X = V (G)− V (T ′).

If {u1, a, u5, d} hitsX, then assume the vertex u5 hits x ∈ X. It follows that u1, u2, u3, u4, u5, x+
{u2a, u3b, u3c} is T3 in G.

Otherwise, {u1, a, u5, d} misses X. If u1 hits a, or if u5 hits d, then assume u5 hits d.
It follows that u1, u2, u3, u4, u5, d+ {u2a, u3b, u3c} is T3 in G.

Otherwise, u1 misses a, and u5 misses d. If {u1, a, u5, d} hits the vertex u3, then assume
the vertex d hits u3. It follows that u1, u2, u3, d, u4, u5 + {u2a, u3b, u3c} is T3 in G.

Otherwise, {u1, a, u5, d} misses the vertex u3. If {u1, a} hits the vertex u4, or if {u5, d}
hits the vertex u2, then assume that the vertex u5 hits u2. It follows that c, u3, u2, u5, u4, d+
{u3b, u2a, u2u1} is T3 in G.

Otherwise, {u1, a} misses the vertex u4, and {u5, d} misses the vertex u2. This implies
that N(u1), N(a) ⊆ {u2, b, c, d, u5}, and N(u5), N(d) ⊆ {u4, b, c, u1, a}. Since δ(G) ≥ 4,
we see that the vertex u1 hits either d or u5; assume that u1 hits u5. Since either vertex
u1 or u5 has degree at least 5 (by Corollary 1.6), assume that d(u1) ≥ 5. This implies that
N(u1) = {u2, b, c, d, u5}, and u3, u2, u1, u5, u4, d+ {u2a, u1b, u1c} is T3 in G.

Case 2.2.4. T4 = P + {v2x, v4y, v4z}

Let T ′ ⊆ G be the tree u1, u2, u3, u4, u5 + {u2a, u4b, u4c, u4d} in G. We know that T ′ is
a subgraph of G since diam(T ′) = 4 (by Theorem ??). Let X = V (G)− V (T ′).

If two vertices in {u5, b, c, d} share an edge, then assume u5 hits d. It follows that
u1, u2, u3, u4, u5, d+ {u2a, u4b, u4c} is T4 in G.

Otherwise no two vertices in {u5, b, c, d} share an edge. If {u5, b, c, d} hits X, then
assume the vertex u5 hits x ∈ X. It follows that u1, u2, u3, u4, u5, x+ {u2a, u4b, u4c} is T4
in G.

Otherwise, {u5, b, c, d} misses X. Since δ(G) ≥ 4, this implies that each vertex in
{u5, b, c, d} hits at least four vertices in {u1, u2, u3, u4, a}. If {u5, b, c, d} hits the vertex u2,
then assume that the vertex b hits u2. Since the vertex d hits at least one of the vertices
in {u1, a}, assume d hits u1. It follows that u5, u4, u3, u2, u1, d+ {u4c, u2a, u2b} is T4 in G.

Otherwise, no vertex in {u5, b, c, d} hits u2. This implies that the neighborhood of each
vertex in {u5, b, c, d} is {u1, u3, u4, a}, and u3, u4, u5, u1, u2, a+ {u4b, u1c, u1d} is T4 in G.

Case 2.2.5. T5 = P + {v3x, v4y, v4z}
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Let T ′ ⊆ G be the tree u1, u2, u3, u4, u5 + {u2a, u2b, u3c, u3d} in G. We know that T ′ is
a subgraph of G since diam(T ′) = 4 (by Theorem ??). Let X = V (G)− V (T ′).

If two of the vertices in {u1, a, b} share an edge, then assume the vertex u1 hits a. It
follows that a, u1, u2, u3, u4, u5 + {u2b, u3c, u3d} is T5 in G.

Otherwise, no two vertices in {u1, a, b} share an edge. If {u1, a, b} hits X, then assume
the vertex u1 hits x ∈ X. It follows that x, u1, u2, u3, u4, u5 + {u2b, u3c, u3d} is T5 in G.

Otherwise, {u1, a, b} misses X. If {u1, a, b} hits {c, d}, then assume that u1 hits c. It
follows that u5, u4, u3, u2, u1, c+ {u3d, u2a, u2b} is T5 in G.

Otherwise, {u1, a, b} misses {c, d}. Since δ(G) ≥ 4, this implies that the neighborhood
of each vertex in {u1, a, b} is {u2, u3, u4, u5}, and u5, u1, u2, u3, u4, b+ {u2a, u3c, u3d} is T5
in G.
Case 2.2.6. T6 = P + {v2x, v3y, yz}

Let T ′ ⊆ G be the tree u1, u2, u3, u4, u5 + {u2a, u3b, bc, u4d} in G. We know that T ′ is
a subgraph of G since diam(T ′) = 4 (by Theorem ??). Let X = V (G)− V (T ′).

If one of {u1, a, u5, d} hitsX, then assume u5 hits x ∈ X. It follows that u1, u2, u3, u4, u5, x+
{u2a, u3b, bc} is T6 in G.

Otherwise, {u1, a, u5, d} misses X. If the vertex u1 hits a, or if u5 hits d, then assume
u5 hits d. It follows that u1, u2, u3, u4, u5, d+ {u2a, u3b, bc} is T6 in G.

Otherwise, u1 misses a, and u5 misses d. If {u1, a, d, u5} hits u3, then assume the vertex
d hits u3. Thus, u1, u2, u3, d, u4, u5 + {u2a, u3b, bc} is T6 in G.

Otherwise, {u1, a, d, u5} misses u3. If {u1, a, d, u5} hits the vertex c, then assume that
the vertex d hits c. It follows that u1, u2, u3, b, c, d+ {u2a, u3u4, u4u5} is T6 in G.

Otherwise, {u1, a, d, u5} misses c. This implies that N(u5), N(d) ⊆ {u1, u2, u4, a, b},
and N(u1), N(a) ⊆ {u2, u4, u5, b, d}. Since δ(G) ≥ 4, we see that the vertex u5 hits
{u1, a}; assume that u5 hits u1. Since either vertex u1 or u5 has degree at least 5 (by
Corollary 1.6), assume that d(u5) ≥ 5. It follows that N(u5) = {u1, u2, u4, a, b}, and
u3, u4, u5, u1, u2, a+ {u4d, u5b, bc} is T6 in G.
Case 2.2.7. T7 = P + {v2x, v4y, yz}

Let T ′ ⊆ G be the tree u1, u2, u3, u4, u5 + {u3a, u3b, u3c, cd} in G. We know that T ′ is
a subgraph of G since diam(T ′) = 4 (by Theorem ??). Let X = V (G)− V (T ′).

If the vertex u1 hits u3, then (u1, u2, u3) is a 3-cycle in G. Since either vertex u1 or u2
has degree at least 5 (by Corollary 1.6), assume that d(u1) ≥ 5. Similarly, assume that
each vertex in {u5, d} that hits u3 has degree at least 5.

By the previous paragraph, we see that each vertex in {u1, u5, d} hits at least four
vertices in G − u3. If a vertex in {u1, u5, d} hits two vertices in {a, b} ∪X, then assume
that u1 hits both a and b. It follows that a, u1, u2, u3, u4, u5 + {u1b, u3c, cd} is T7 in G.

Otherwise, each vertex in {u1, u5, d} hits at most one vertex in {a, b} ∪ X. Since
δ(G) ≥ 4, this implies that the vertex u1 hits at least two vertices in {u4, u5, c, d}, the
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vertex u5 hits at least two vertices in {u1, u2, c, d}, and the vertex d hits at least two
vertices in {u1, u2, u4, u5}.

If the vertices in {u1, u5, d} share at least two edges, then assume that the vertex u1
hits both u5 and d. It follows that b, u3, u2, u1, u5, u4 + {u3a, u1d, dc} is T7 in G.

Otherwise, the vertices in {u1, u5, d} share at most one edge. Thus, one of the vertices
in {u1, u5, d} misses the other two; assume that the vertex d misses {u1, u5}. It follows
that the vertex d hits both u2 and u4, and a, u3, c, d, u2, u1 + {u3b, du4, u4u5} is T7 in G.

Case 2.2.8. T8 = P + {v3x, v4y, yz}

Let T ′ ⊆ G be the tree u1, u2, u3, u4, u5 + {u2a, u2b, u3c, cd} in G. We know that T ′ is
a subgraph of G since diam(T ′) = 4 (by Theorem ??). Let X = V (G)− V (T ′).

If two of the vertices in {u1, a, b} share an edge, then assume the vertex u1 hits a. It
follows that a, u1, u2, u3, u4, u5 + {u2b, u3c, cd} is T8 in G.

Otherwise, no two vertices in {u1, a, b} share an edge. If {u1, a, b} hits X, then assume
the vertex u1 hits x ∈ X. It follows that x, u1, u2, u3, u4, u5 + {u2b, u3c, cd} is T8 in G.

Otherwise, {u1, a, b} misses X. Since δ(G) ≥ 4, we see that each vertex in {u1, a, b} hits
the vertex u2 as well as at least three vertices in {u3, u4, u5, c, d}. If a vertex in {u1, a, b}
hits c and a different vertex in {u1, a, b} hits d, then assume that u1 hits d, and b hits c.
It follows that d, u1, u2, u3, u4, u5 + {u2a, u3c, cb} is T8 in G.

Otherwise, if a vertex in {u1, a, b} hits c, then the other two vertices in {u1, a, b} miss
d. If a vertex in {u1, a, b} hits u4 and a different vertex in {u1, a, b} hits u5, then assume
that a hits u4, and u1 hits u5. It follows that u5, u1, u2, u3, u4, a + {u2b, u3c, cd} is T8 in
G.

Otherwise, if a vertex in {u1, a, b} hits u4, then the other two vertices in {u1, a, b}
miss u5. If a vertex in {u1, a, b} hits either both c and d, or both u4 and u5, then
assume that the vertex b hits both c and d. This implies that {u1, a} misses {c, d}, and
N(u1) = N(a) = {u2, u3, u4, u5}, a contradiction (since the vertex a hits u4, and the vertex
u1 hits u5).

Otherwise, no vertex in {u1, a, b} hits either both c and d, or both u4 and u5. Since
δ(G) ≥ 4, we see that each vertex in {u1, a, b} has precisely the same neighborhood.
Specifically, all three vertices in {u1, a, b} hit both vertices u2 and u3, exactly one vertex
in {c, d}, and exactly one vertex in {u4, u5}. Assume that each vertex in {u1, a, b} hits both
c and u5 (if each vertex in {u1, a, b} hits d instead of c, or u4 instead of u5, then the proof is
similar). It follows that N(u1) = N(a) = N(b) = {u2, u3, c, u5}, and u3, u1, u2, b, u5, u4 +
{u2a, bc, cd} is T8 in G.

Case 2.3. Trees of diameter 6.

Let P be a path, where P = v1, v2, v3, v4, v5, v6, v7. Since each of the trees T9 through
T13 in this case has diameter 6, we will use the path P in the definition of each tree. The
remaining two vertices used in the tree definitions will be x and y, and the two remaining
edges will be stated in each case.

Case 2.3.1. T9 = P + {v2x, v3y}
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Let T ′ ⊆ G be the tree u1, u2, u3, u4, u5, u6 + {u2a, u3b, u5c} in G. We know that T ′ is
a subgraph of G because T ′ = T2 (see Case 1.2.). Let X = V (G)− V (T ′).

If {u6, c} hits X, then assume the vertex u6 hits x ∈ X. Thus, u1, u2, u3, u4, u5, u6, x+
{u2a, u3b} is T9 in G.

Otherwise, {u6, c} misses X. If the vertex u6 hits c, then u1, u2, u3, u4, u5, u6, c +
{u2a, u3b} is T9 in G.

Otherwise, u6 misses c. If {u6, c} hits u4, then assume the vertex c hits u4. It follows
that u1, u2, u3, u4, c, u5, u6 + {u2a, u3b} is T9 in G.

Otherwise, {u6, c} misses u4. If {u6, c} hits {u1, a}, then assume the vertex c hits u1.
Thus, u4, u3, u2, u1, c, u5, u6 + {u3b, u2a} is T9 in G.

Otherwise, {u6, c} misses {u1, a}. Since δ(G) ≥ 4, it follows that the neighborhood of
each vertex u6 and c is {u2, u3, b, u5}, and u1, u2, u3, u4, u5, u6, b+ {u2a, u3c} is T9 in G.

Case 2.3.2. T10 = P + {v2x, v4y}

Let T ′ ⊆ G be the tree u1, u2, u3, u4, u5, u6, u7 + {u2a, u6b} in G. We know that T ′ is a
subgraph of G since T ′ is a double-broom (by Theorem 1.4). Let X = V (G)− V (T ′).

If the vertex u4 hits a vertex x ∈ X, then u1, u2, u3, u4, u5, u6, u7 + {u2a, u4x} is T6 in
G.

Otherwise, u4 misses X. If the vertex u4 hits {u1, a, u7, b}, then assume that u4 hits b.
Thus, u1, u2, u3, u4, u5, u6, u7 + {u2a, u4b} is T6 in G.

Otherwise, u4 misses {u1, a, u7, b}. Since δ(G) ≥ 4, we see that N(u4) = {u2, u3, u5, u6}.
If {u1, a, u7, b} hits X, then assume that the vertex u7 hits x ∈ X. It follows that
u1, u2, u3, u4, u6, u7, x+ {u2a, u4u5} is T6 in G.

Otherwise, {u1, a, u7, b} misses X. If the vertex u1 hits a, or the vertex u7 hits b, then
assume that u7 hits b. It follows that u1, u2, u3, u4, u6, u7, b+ {u2a, u4u5} is T6 in G.

Otherwise, the vertex u1 misses a, and the vertex u7 misses b. If {u1, a} hits u6, or {u7, b}
hits u2, then assume that the vertex a hits u6. It follows that u7, u6, a, u2, u3, u4, u5 +
{u6b, u2u1} is T6 in G.

Otherwise, {u1, a} misses u6, and {u7, b} misses u2. Notice that N(a), N(u1) ⊆
{u2, u3, u5, u7, b}, and N(b), N(u7) ⊆ {u1, a, u3, u5, u6}. Since δ(G) ≥ 4, we see that
the vertex a hits either vertex u7 or b; assume that a hits b. Since either vertex a
or b has degree at least 5 (by Corollary 1.6), assume that d(a) ≥ 5. It follows that
N(a) = {u2, u3, u5, u7, b}, and u1, u2, u4, u6, u7, a, b+ {u2u3, u6u5} is T6 in G.

Case 2.3.3. T11 = P + {v2x, v5y}
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Let T ′ ⊆ G be the tree u1, u2, u3, u4, u5, u6 + {u2a, u5b, u5c} in G. We know that T ′ is
a subgraph of G since T ′ is a double-broom (by Theorem 1.4). Let X = V (G)− V (T ′).

If two of the vertices in {u6, b, c} share an edge, then assume the vertex u6 hits c. It
follows that u1, u2, u3, u4, u5, u6, c+ {u2a, u5b} is T11 in G.

Otherwise, no two vertices in {u6, b, c} share an edge. If {u6, b, c} hits X, then assume
the vertex u6 hits x ∈ X. It follows that u1, u2, u3, u4, u5, u6, x+ {u2a, u5b} is T11 in G.

Otherwise, {u6, b, c} misses X. If {u6, b, c} hits {u1, a}, then assume the vertex u6 hits
u1. Thus, b, u5, u4, u3, u2, u1, u6 + {u5c, u2a} is T11 in G.

Otherwise, {u6, b, c} misses {u1, a}. Since δ(G) ≥ 4, we see that the neighborhood
of each of the three vertices in {u6, b, c} is {u2, u3, u4, u5}, and u1, u2, u3, u6, u4, u5, b +
{u2a, u4c} is T11 in G.
Case 2.3.4. T12 = P + {v3x, v4y}

Let T ′ ⊆ G be the tree u1, u2, u3, u4, u5, u6 + {u3a, u4b, u5c} in G. We know that T ′ is
a subgraph of G because T ′ = T1 (see Case 1.1.). Let X = V (G)− V (T ′).

If {u6, c} hitsX, then assume that the vertex u6 hits x ∈ X. It follows that u1, u2, u3, u4, u5, u6, x+
{u3a, u4b} is T12 in G.

Otherwise, {u6, c} misses X. If the vertex u6 hits c, then u1, u2, u3, u4, u5, u6, c +
{u3a, u4b} is T12 in G.

Otherwise, the vertex u6 misses c. If {u6, c} hits u1, then assume the vertex u6 hits u1.
Thus, c, u5, u4, u3, u2, u1, u6 + {u4b, u3a} is T12 in G.

Otherwise, {u6, c} misses u1. If {u6, c} hits u4, then assume the vertex u6 hits u4. It
follows that u1, u2, u3, u4, u6, u5, c +{u3a, u4b} is T12 in G.

Otherwise, {u6, c} misses u4. If {u6, c} hits a, then assume the vertex u6 hits a. Thus,
a, u6, u5, u4, u3, u2, u1 + {u5c, u4b} is T12 in G.

Otherwise, {u6, c} misses a. Since δ(G) ≥ 4, we see that each vertex u6 and c has
neighborhood {u2, u3, b, u5}, and u6, u5, u4, u3, c, u2, u1 + {u4b, u3a} is T12 in G.
Case 2.3.5. T13 = P + {v3x, v5y}

Let T ′ ⊆ G be the tree u1, u2, u3, u4, u5, u6 + {u3a, u5b, u5c} in G. We know that T ′ is
a subgraph of G since T ′ has a vertex with three leaf neighbors (by Theorem 1.1). Let
X = V (G)− V (T ′).

If two of the vertices in {u6, b, c} share an edge, then assume the vertex u6 hits c. It
follows that u1, u2, u3, u4, u5, u6, c+ {u3a, u5b} is T13 in G.

Otherwise, no two vertices in {u6, b, c} share an edge. If {u6, b, c} hits X, then assume
the vertex u6 hits x ∈ X. It follows that u1, u2, u3, u4, u5, u6, x+ {u3a, u5b} is T13 in G.

Otherwise, {u6, b, c} misses X. If a vertex in {u6, b, c} hits the vertex u3, and a different
vertex in {u6, b, c} hits the vertex a, then assume that b hits u3, and u6 hits a. It follows
that u1, u2, u3, u4, u5, u6, a+ {u3b, u5c} is T13 in G.

Otherwise, if a vertex in {u6, b, c} hits the vertex u3, then the other two vertices in
{u6, b, c} both miss the vertex a. If a vertex in {u6, b, c} hits the vertex u2, and a different
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vertex in {u6, b, c} hits the vertex u1, then assume that b hits u2 and u6 hits u1. It follows
that b, u2, u3, u4, u5, u6, u1 + {u3a, u5c} is T13 in G.

Otherwise, if a vertex in {u6, b, c} hits the vertex u2, then the other two vertices in
{u6, b, c} both miss the vertex u1. If a vertex in {u6, b, c} hits both u1 and u2, then
assume that the vertex c hits both u1 and u2. It follows that {b, u6} misses {u1, u2}. Since
δ(G) ≥ 4, this implies that N(b) = N(u6) = {u3, u4, u5, a}, a contradiction (since the
vertex b hits u3, and the vertex u6 hits a).

Otherwise, no vertex in {u6, b, c} hits both u1 and u2. If a vertex in {u6, b, c} hits both
u3 and a, then assume that the vertex c hits both u3 and a. It follows that {b, u6} misses
{u3, a}. This implies that N(b) = N(u6) = {u1, u2, u4, u5}, a contradiction (since the
vertex b hits u2, and the vertex u6 hits u1).

Otherwise, no vertex in {u6, b, c} hits both u3 and a. Since δ(G) ≥ 4, this implies that
the three vertices in {u6, b, c} have precisely the same neighborhoods. Specifically, each
vertex in {u6, b, c} hits both u4 and u5, as well as exactly one vertex from {u3, a}, and
exactly one vertex from {u1, u2}.

If each vertex in {u6, b, c} hits the vertex u1, then u5, b, u1, u2, u3, u4, u6 + {u1c, u3a} is
T13 in G. Otherwise, each vertex in {u6, b, c} misses u1. This implies that each vertex in
{u6, b, c} hits u2, and a, u3, u2, c, u5, u6, u4 + {u2u1, u5b} is T13 in G. �
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