On the Erdős-Sós Conjecture for $k=9$

Gary Tiner ${ }^{* 1}$, Zachery Tomlin ${ }^{2}$
${ }^{1}$ Faulkner University United States, 5345 Atlanta Hwy, Montgomery, AL 36109, United States
${ }^{2}$ Faulkner University United States, 5345 Atlanta Hwy, Montgomery, AL 36109, United States

Abstract

Let G be a graph with average degree greater than $k-2$. Erdős and Sós conjectured that G contains every tree on k vertices. The conjecture is known to be true for values of k up to 8. In this paper, we prove that the Erdős and Sós conjecture holds for $k=9$.

Mathematics Subject Classification (2020). 05C35
Keywords. Erdős and Sós Conjecture, Extremal graph theory, Embedding trees into graphs

1. Introduction

The average degree of a graph G, denoted $\bar{d}(G)$, is $2|E(G)| /|V(G)|$. Erdős and Gallai [5] proved that if $\bar{d}(G)>k-2$, then G contains a path on k vertices. Subsequently, Erdős and Sós made the following conjecture:
Erdős-Sós Conjecture. If G is a graph with $\bar{d}(G)>k-2$, then G contains every tree on k vertices.

Various special cases of the conjecture have been proven. Many place restrictions on the graph G. The cases where the graph G has a number of vertices $k, k+1$, or $k+2$, were proved by Zhou [13], Slater, Teo, and Yap [8], and Woźniak [11], respectively. The cases where G has a number of vertices $k+3$ or $k+4$ were proved by Tiner [10], and Yuan and Zhang [12], respectively. Eaton and Tiner [4] proved the conjecture holds if a longest path in the graph G has at most $k+3$ vertices. In as early as 2003, Simonovits [1] announced a proof of the Erdős-Sós Conjecture for all sufficiently large values of k (joint work with Ajtai, Komlós, and Szemerédi).

Other cases that have been proven place restrictions on the class of trees. Sidorenko [7] proved the conjecture holds for every tree with a vertex having at least $\left\lceil\frac{k}{2}\right\rceil-1$ leafneighbors. Eaton and Tiner [3] proved the following improvement:
Theorem 1.1. If G is a graph with $\bar{d}(G)>k-2$, then G contains every tree on k vertices having a vertex with at least $\left\lceil\frac{k}{2}\right\rceil-2$ leaf neighbors.

A spider is a tree with one vertex of degree at least 3, called the center, and all others with degree at most 2. Fan, Hong, and Liu [2] proved the following:
Theorem 1.2. If G is a graph with $\bar{d}(G)>k-2$, then G contains every spider on k vertices.

[^0]The diameter of a tree T, or $\operatorname{diam}(T)$, is the number of edges on a longest path in T. McLennan [6] proved the following:
Theorem 1.3. If G is a graph with $\bar{d}(G)>k-2$, then G contains every tree on k vertices that has diameter at most 4.

A double-broom is a tree that contains a path a_{1}, \ldots, a_{r}, where each vertex not on the path is adjacent to either the vertex a_{1} or a_{r}. Notice that a path is a double-broom. Tiner [9] proved the following:
Theorem 1.4. If G is a graph with $\bar{d}(G)>k-2$, then G contains every double-broom on k vertices.

Let G be a graph. For $A \subseteq V(G)$, the number of edges with at least one endpoint in A is $e_{G}^{*}(A)$, or simply $e^{*}(A)$. A proof of the following lemma is in [3]:
Lemma 1.5. Let G be a graph with $\bar{d}(G)>k-2$. Let $W \subseteq V(G)$ and $G^{\prime}=G-W$. If $e^{*}(W) \leq \frac{1}{2}(k-2)|W|$, then $\bar{d}\left(G^{\prime}\right)>k-2$.
The minimum degree among all vertices in G is $\delta(G)$. For a natural number m, a graph G is minimal with $\bar{d}(G)>m$ if $\bar{d}\left(G^{\prime}\right) \leq m$ whenever G^{\prime} is a proper subgraph of G. The following corollary follows from Lemma 1.5:
Corollary 1.6. Let G be a graph that is minimal with $\bar{d}(G)>k-2$. If $W \subseteq V(G)$, then $e^{*}(W)>\frac{1}{2}|W|(k-2)$, and $\delta(G) \geq\left\lfloor\frac{k}{2}\right\rfloor$. Furthermore, for odd k, if $u v \in E(G)$, then either u or v has degree at least $\left\lfloor\frac{k}{2}\right\rfloor+1$.

If $a b \in E(G)$, then the vertex a hits b; otherwise, a misses b. Let $C, D \subseteq V(G)$. A vertex v hits C if there is a vertex c in the set C such that $v c \in E(G)$. The set D hits C if a vertex $d \in D$ hits C.

Eaton and Tiner [3] showed that the Erdős-Sós Conjecture holds for values of k at most 8. In this paper, we prove that the conjecture holds for $k=9$.

For $k=9$, the graph G in Corollary 1.6 has $\bar{d}(G)>7$. This implies that $\delta(G) \geq 4$. Furthermore, for $u, v \in V(G)$, if the vertex u hits v, then either u or v has degree at least 5.

2. Proof of the main theorem

Theorem 2.1. If G is a graph with $\bar{d}(G)>7$, then G contains every tree on 9 vertices.
Proof. If a subgraph G^{\prime} of G that is minimal with $\bar{d}\left(G^{\prime}\right)>7$ contains every tree on 9 vertices, then so does G. For this reason, we will simply assume that the graph G is minimal with $\bar{d}(G)>7$. By Corollary 1.6 , this implies that $\delta(G) \geq 4$, and if $u v \in E(G)$, then either u or v has degree at least 5 .

Let T be a tree on 9 vertices, and notice that the diameter of T is at least 2 and at most 8. If $\operatorname{diam}(T) \leq 4$, then the graph G contains T (by Theorem ??).

Otherwise, $5 \leq \operatorname{diam}(T) \leq 8$. If T has diameter 8 , then T is a double-broom (more specifically a path), and G contains T (by Theorem 1.4). If T has diameter 7 , then T is a spider, and G contains T (by Theorem 1.2).

Otherwise, $5 \leq \operatorname{diam}(T) \leq 6$. We leave it to the readers to convince themselves that there are exactly eight trees of diameter 5 , and exactly five trees of diameter 6 , that are not already known to be in the graph G using Theorems 1.1 through 1.4. We label the 13 trees T_{1} through T_{13}, where trees T_{1} through T_{8} have diameter 5 , and trees T_{9} through T_{13} have diameter 6 . We will prove that each one of the trees T_{1} through T_{13} is contained in G as a subgraph.

There are two main cases in our proof: Case 1 deals with trees of diameter 5, and Case 2 deals with trees of diameter 6 . In the eight subcases of Case 1 (i.e., Cases 1.1 through
1.8), we prove that G contains the eight trees of diameter 5; and in the five subcases of Case 2 (i.e., Cases 2.1 through 2.5), we prove that G contains the five trees of diameter 6 . In the title of each subcase, we define the tree T_{i} that will be proven to be in the graph G. Below each title is an image of the tree. In each proof, we state a tree T^{\prime} that is already known to be in the graph G. We will then use T^{\prime} and properties of the graph to prove that G contains T_{i}.
Case 2.2. Trees of diameter 5 .
Let P be a path, where $P=v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}$. Since each of the trees T_{1} through T_{8} in this case has diameter 5 , we will use the path P in the definition of each tree. The remaining three vertices used in each tree definition will be x, y, and z, and the three remaining edges will be stated in each case.
Case 2.2.1. $T_{1}=P+\left\{v_{2} x, v_{3} y, v_{4} z\right\}$

\mathbf{T}^{\prime}

Let $T^{\prime} \subseteq G$ be the tree $u_{1}, u_{2}, u_{3}, u_{4}, u_{5}+\left\{u_{2} a, u_{3} b, u_{4} c, u_{4} d\right\}$ in G. We know that T^{\prime} is a subgraph of G since $\operatorname{diam}\left(T^{\prime}\right)=4$ (by Theorem ??). Let $X=V(G)-V\left(T^{\prime}\right)$.

If two of the vertices in $\left\{u_{5}, c, d\right\}$ share an edge, then assume the vertex u_{5} hits d. It follows that $u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, d+\left\{u_{2} a, u_{3} b, u_{4} c\right\}$ is T_{1} in G.

Otherwise, no two vertices in $\left\{u_{5}, c, d\right\}$ share an edge. If $\left\{u_{5}, c, d\right\}$ hits X, then assume the vertex u_{5} hits $x \in X$. It follows that $u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, x+\left\{u_{2} a, u_{3} b, u_{4} c\right\}$ is T_{1} in G.

Otherwise, $\left\{u_{5}, c, d\right\}$ misses X. If $\left\{u_{5}, c, d\right\}$ hits $\left\{u_{1}, a\right\}$, then assume the vertex d hits u_{1}. Thus, $u_{5}, u_{4}, u_{3}, u_{2}, u_{1}, d+\left\{u_{4} c, u_{3} b, u_{2} a\right\}$ is T_{1} in G.

Otherwise, $\left\{u_{5}, c, d\right\}$ misses $\left\{u_{1}, a\right\}$. Since $\delta(G) \geq 4$, this implies that the neighborhood of each vertex in $\left\{u_{5}, c, d\right\}$ is $\left\{u_{2}, u_{3}, u_{4}, b\right\}$, and $u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, b+\left\{u_{2} a, u_{3} c, u_{4} d\right\}$ is T_{1} in G.

Case 2.2.2. $T_{2}=P+\left\{v_{2} x, v_{3} y, v_{5} z\right\}$
T_{2}

T'

Let $T^{\prime} \subseteq G$ be the tree $u_{1}, u_{2}, u_{3}, u_{4}, u_{5}+\left\{u_{2} a, u_{2} b, u_{2} c, u_{4} d\right\}$ in G. We know that T^{\prime} is a subgraph of G since $\operatorname{diam}\left(T^{\prime}\right)=4$ (by Theorem ??). Let $X=V(G)-V\left(T^{\prime}\right)$.

If a vertex in $\left\{u_{1}, a, b, c\right\}$ hits at least two vertices in $X \cup\left\{u_{1}, a, b, c\right\}$, then assume the vertex u_{1} hits both a and b. It follows that $a, u_{1}, u_{2}, u_{3}, u_{4}, u_{5}+\left\{u_{1} b, u_{2} c, u_{4} d\right\}$ is T_{2} in G.

Otherwise, no vertex in $\left\{u_{1}, a, b, c\right\}$ hits two vertices in $X \cup\left\{u_{1}, a, b, c\right\}$. Since $\delta(G) \geq 4$, this implies that each vertex in $\left\{u_{1}, a, b, c\right\}$ hits at least two vertices in $\left\{u_{3}, u_{4}, u_{5}, d\right\}$. If two vertices in $\left\{u_{1}, a, b, c\right\}$ hit the vertex u_{3}, then assume a and b hit u_{3}. It follows that $u_{5}, u_{4}, u_{3}, a, u_{2}, u_{1}+\left\{u_{4} d, u_{3} b, u_{2} c\right\}$ is T_{2} in G.

Otherwise, at most one vertex in $\left\{u_{1}, a, b, c\right\}$ hits u_{3}. Assume $\left\{u_{1}, b, c\right\}$ misses u_{3}. Thus, each vertex in $\left\{u_{1}, b, c\right\}$ hits at least two vertices in $\left\{u_{4}, u_{5}, d\right\}$. This implies that either two vertices in $\left\{u_{1}, b, c\right\}$ hit u_{5} or two vertices in $\left\{u_{1}, b, c\right\}$ hit d; assume that vertices b and c both hit u_{5}. It follows that $c, u_{5}, u_{4}, u_{3}, u_{2}, u_{1},+\left\{u_{5} b, u_{4} d, u_{2} a\right\}$ is T_{2} in G.
Case 2.2.3. $T_{3}=P+\left\{v_{2} x, v_{3} y, v_{3} z\right\}$

Let $T^{\prime} \subseteq G$ be the tree $u_{1}, u_{2}, u_{3}, u_{4}, u_{5}+\left\{u_{2} a, u_{3} b, u_{3} c, u_{4} d\right\}$ in G. We know that T^{\prime} is a subgraph of G since $\operatorname{diam}\left(T^{\prime}\right)=4$ (by Theorem ??). Let $X=V(G)-V\left(T^{\prime}\right)$.

If $\left\{u_{1}, a, u_{5}, d\right\}$ hits X, then assume the vertex u_{5} hits $x \in X$. It follows that $u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, x+$ $\left\{u_{2} a, u_{3} b, u_{3} c\right\}$ is T_{3} in G.

Otherwise, $\left\{u_{1}, a, u_{5}, d\right\}$ misses X. If u_{1} hits a, or if u_{5} hits d, then assume u_{5} hits d. It follows that $u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, d+\left\{u_{2} a, u_{3} b, u_{3} c\right\}$ is T_{3} in G.

Otherwise, u_{1} misses a, and u_{5} misses d. If $\left\{u_{1}, a, u_{5}, d\right\}$ hits the vertex u_{3}, then assume the vertex d hits u_{3}. It follows that $u_{1}, u_{2}, u_{3}, d, u_{4}, u_{5}+\left\{u_{2} a, u_{3} b, u_{3} c\right\}$ is T_{3} in G.

Otherwise, $\left\{u_{1}, a, u_{5}, d\right\}$ misses the vertex u_{3}. If $\left\{u_{1}, a\right\}$ hits the vertex u_{4}, or if $\left\{u_{5}, d\right\}$ hits the vertex u_{2}, then assume that the vertex u_{5} hits u_{2}. It follows that $c, u_{3}, u_{2}, u_{5}, u_{4}, d+$ $\left\{u_{3} b, u_{2} a, u_{2} u_{1}\right\}$ is T_{3} in G.

Otherwise, $\left\{u_{1}, a\right\}$ misses the vertex u_{4}, and $\left\{u_{5}, d\right\}$ misses the vertex u_{2}. This implies that $N\left(u_{1}\right), N(a) \subseteq\left\{u_{2}, b, c, d, u_{5}\right\}$, and $N\left(u_{5}\right), N(d) \subseteq\left\{u_{4}, b, c, u_{1}, a\right\}$. Since $\delta(G) \geq 4$, we see that the vertex u_{1} hits either d or u_{5}; assume that u_{1} hits u_{5}. Since either vertex u_{1} or u_{5} has degree at least 5 (by Corollary 1.6), assume that $d\left(u_{1}\right) \geq 5$. This implies that $N\left(u_{1}\right)=\left\{u_{2}, b, c, d, u_{5}\right\}$, and $u_{3}, u_{2}, u_{1}, u_{5}, u_{4}, d+\left\{u_{2} a, u_{1} b, u_{1} c\right\}$ is T_{3} in G.

Case 2.2.4. $T_{4}=P+\left\{v_{2} x, v_{4} y, v_{4} z\right\}$
T_{4}

T'

Let $T^{\prime} \subseteq G$ be the tree $u_{1}, u_{2}, u_{3}, u_{4}, u_{5}+\left\{u_{2} a, u_{4} b, u_{4} c, u_{4} d\right\}$ in G. We know that T^{\prime} is a subgraph of G since $\operatorname{diam}\left(T^{\prime}\right)=4$ (by Theorem ??). Let $X=V(G)-V\left(T^{\prime}\right)$.

If two vertices in $\left\{u_{5}, b, c, d\right\}$ share an edge, then assume u_{5} hits d. It follows that $u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, d+\left\{u_{2} a, u_{4} b, u_{4} c\right\}$ is T_{4} in G.

Otherwise no two vertices in $\left\{u_{5}, b, c, d\right\}$ share an edge. If $\left\{u_{5}, b, c, d\right\}$ hits X, then assume the vertex u_{5} hits $x \in X$. It follows that $u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, x+\left\{u_{2} a, u_{4} b, u_{4} c\right\}$ is T_{4} in G.

Otherwise, $\left\{u_{5}, b, c, d\right\}$ misses X. Since $\delta(G) \geq 4$, this implies that each vertex in $\left\{u_{5}, b, c, d\right\}$ hits at least four vertices in $\left\{u_{1}, u_{2}, u_{3}, u_{4}, a\right\}$. If $\left\{u_{5}, b, c, d\right\}$ hits the vertex u_{2}, then assume that the vertex b hits u_{2}. Since the vertex d hits at least one of the vertices in $\left\{u_{1}, a\right\}$, assume d hits u_{1}. It follows that $u_{5}, u_{4}, u_{3}, u_{2}, u_{1}, d+\left\{u_{4} c, u_{2} a, u_{2} b\right\}$ is T_{4} in G.

Otherwise, no vertex in $\left\{u_{5}, b, c, d\right\}$ hits u_{2}. This implies that the neighborhood of each vertex in $\left\{u_{5}, b, c, d\right\}$ is $\left\{u_{1}, u_{3}, u_{4}, a\right\}$, and $u_{3}, u_{4}, u_{5}, u_{1}, u_{2}, a+\left\{u_{4} b, u_{1} c, u_{1} d\right\}$ is T_{4} in G.

Case 2.2.5. $T_{5}=P+\left\{v_{3} x, v_{4} y, v_{4} z\right\}$
T_{5}

T'

Let $T^{\prime} \subseteq G$ be the tree $u_{1}, u_{2}, u_{3}, u_{4}, u_{5}+\left\{u_{2} a, u_{2} b, u_{3} c, u_{3} d\right\}$ in G. We know that T^{\prime} is a subgraph of G since $\operatorname{diam}\left(T^{\prime}\right)=4$ (by Theorem ??). Let $X=V(G)-V\left(T^{\prime}\right)$.

If two of the vertices in $\left\{u_{1}, a, b\right\}$ share an edge, then assume the vertex u_{1} hits a. It follows that $a, u_{1}, u_{2}, u_{3}, u_{4}, u_{5}+\left\{u_{2} b, u_{3} c, u_{3} d\right\}$ is T_{5} in G.

Otherwise, no two vertices in $\left\{u_{1}, a, b\right\}$ share an edge. If $\left\{u_{1}, a, b\right\}$ hits X, then assume the vertex u_{1} hits $x \in X$. It follows that $x, u_{1}, u_{2}, u_{3}, u_{4}, u_{5}+\left\{u_{2} b, u_{3} c, u_{3} d\right\}$ is T_{5} in G.

Otherwise, $\left\{u_{1}, a, b\right\}$ misses X. If $\left\{u_{1}, a, b\right\}$ hits $\{c, d\}$, then assume that u_{1} hits c. It follows that $u_{5}, u_{4}, u_{3}, u_{2}, u_{1}, c+\left\{u_{3} d, u_{2} a, u_{2} b\right\}$ is T_{5} in G.

Otherwise, $\left\{u_{1}, a, b\right\}$ misses $\{c, d\}$. Since $\delta(G) \geq 4$, this implies that the neighborhood of each vertex in $\left\{u_{1}, a, b\right\}$ is $\left\{u_{2}, u_{3}, u_{4}, u_{5}\right\}$, and $u_{5}, u_{1}, u_{2}, u_{3}, u_{4}, b+\left\{u_{2} a, u_{3} c, u_{3} d\right\}$ is T_{5} in G.
Case 2.2.6. $T_{6}=P+\left\{v_{2} x, v_{3} y, y z\right\}$

Let $T^{\prime} \subseteq G$ be the tree $u_{1}, u_{2}, u_{3}, u_{4}, u_{5}+\left\{u_{2} a, u_{3} b, b c, u_{4} d\right\}$ in G. We know that T^{\prime} is a subgraph of G since $\operatorname{diam}\left(T^{\prime}\right)=4$ (by Theorem ??). Let $X=V(G)-V\left(T^{\prime}\right)$.

If one of $\left\{u_{1}, a, u_{5}, d\right\}$ hits X, then assume u_{5} hits $x \in X$. It follows that $u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, x+$ $\left\{u_{2} a, u_{3} b, b c\right\}$ is T_{6} in G.

Otherwise, $\left\{u_{1}, a, u_{5}, d\right\}$ misses X. If the vertex u_{1} hits a, or if u_{5} hits d, then assume u_{5} hits d. It follows that $u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, d+\left\{u_{2} a, u_{3} b, b c\right\}$ is T_{6} in G.

Otherwise, u_{1} misses a, and u_{5} misses d. If $\left\{u_{1}, a, d, u_{5}\right\}$ hits u_{3}, then assume the vertex d hits u_{3}. Thus, $u_{1}, u_{2}, u_{3}, d, u_{4}, u_{5}+\left\{u_{2} a, u_{3} b, b c\right\}$ is T_{6} in G.

Otherwise, $\left\{u_{1}, a, d, u_{5}\right\}$ misses u_{3}. If $\left\{u_{1}, a, d, u_{5}\right\}$ hits the vertex c, then assume that the vertex d hits c. It follows that $u_{1}, u_{2}, u_{3}, b, c, d+\left\{u_{2} a, u_{3} u_{4}, u_{4} u_{5}\right\}$ is T_{6} in G.

Otherwise, $\left\{u_{1}, a, d, u_{5}\right\}$ misses c. This implies that $N\left(u_{5}\right), N(d) \subseteq\left\{u_{1}, u_{2}, u_{4}, a, b\right\}$, and $N\left(u_{1}\right), N(a) \subseteq\left\{u_{2}, u_{4}, u_{5}, b, d\right\}$. Since $\delta(G) \geq 4$, we see that the vertex u_{5} hits $\left\{u_{1}, a\right\}$; assume that u_{5} hits u_{1}. Since either vertex u_{1} or u_{5} has degree at least 5 (by Corollary 1.6), assume that $d\left(u_{5}\right) \geq 5$. It follows that $N\left(u_{5}\right)=\left\{u_{1}, u_{2}, u_{4}, a, b\right\}$, and $u_{3}, u_{4}, u_{5}, u_{1}, u_{2}, a+\left\{u_{4} d, u_{5} b, b c\right\}$ is T_{6} in G.
Case 2.2.7. $T_{7}=P+\left\{v_{2} x, v_{4} y, y z\right\}$

Let $T^{\prime} \subseteq G$ be the tree $u_{1}, u_{2}, u_{3}, u_{4}, u_{5}+\left\{u_{3} a, u_{3} b, u_{3} c, c d\right\}$ in G. We know that T^{\prime} is a subgraph of G since $\operatorname{diam}\left(T^{\prime}\right)=4$ (by Theorem ??). Let $X=V(G)-V\left(T^{\prime}\right)$.

If the vertex u_{1} hits u_{3}, then $\left(u_{1}, u_{2}, u_{3}\right)$ is a 3 -cycle in G. Since either vertex u_{1} or u_{2} has degree at least 5 (by Corollary 1.6), assume that $d\left(u_{1}\right) \geq 5$. Similarly, assume that each vertex in $\left\{u_{5}, d\right\}$ that hits u_{3} has degree at least 5 .

By the previous paragraph, we see that each vertex in $\left\{u_{1}, u_{5}, d\right\}$ hits at least four vertices in $G-u_{3}$. If a vertex in $\left\{u_{1}, u_{5}, d\right\}$ hits two vertices in $\{a, b\} \cup X$, then assume that u_{1} hits both a and b. It follows that $a, u_{1}, u_{2}, u_{3}, u_{4}, u_{5}+\left\{u_{1} b, u_{3} c, c d\right\}$ is T_{7} in G.

Otherwise, each vertex in $\left\{u_{1}, u_{5}, d\right\}$ hits at most one vertex in $\{a, b\} \cup X$. Since $\delta(G) \geq 4$, this implies that the vertex u_{1} hits at least two vertices in $\left\{u_{4}, u_{5}, c, d\right\}$, the
vertex u_{5} hits at least two vertices in $\left\{u_{1}, u_{2}, c, d\right\}$, and the vertex d hits at least two vertices in $\left\{u_{1}, u_{2}, u_{4}, u_{5}\right\}$.

If the vertices in $\left\{u_{1}, u_{5}, d\right\}$ share at least two edges, then assume that the vertex u_{1} hits both u_{5} and d. It follows that $b, u_{3}, u_{2}, u_{1}, u_{5}, u_{4}+\left\{u_{3} a, u_{1} d, d c\right\}$ is T_{7} in G.

Otherwise, the vertices in $\left\{u_{1}, u_{5}, d\right\}$ share at most one edge. Thus, one of the vertices in $\left\{u_{1}, u_{5}, d\right\}$ misses the other two; assume that the vertex d misses $\left\{u_{1}, u_{5}\right\}$. It follows that the vertex d hits both u_{2} and u_{4}, and $a, u_{3}, c, d, u_{2}, u_{1}+\left\{u_{3} b, d u_{4}, u_{4} u_{5}\right\}$ is T_{7} in G.

Case 2.2.8. $T_{8}=P+\left\{v_{3} x, v_{4} y, y z\right\}$

Let $T^{\prime} \subseteq G$ be the tree $u_{1}, u_{2}, u_{3}, u_{4}, u_{5}+\left\{u_{2} a, u_{2} b, u_{3} c, c d\right\}$ in G. We know that T^{\prime} is a subgraph of G since $\operatorname{diam}\left(T^{\prime}\right)=4$ (by Theorem ??). Let $X=V(G)-V\left(T^{\prime}\right)$.

If two of the vertices in $\left\{u_{1}, a, b\right\}$ share an edge, then assume the vertex u_{1} hits a. It follows that $a, u_{1}, u_{2}, u_{3}, u_{4}, u_{5}+\left\{u_{2} b, u_{3} c, c d\right\}$ is T_{8} in G.

Otherwise, no two vertices in $\left\{u_{1}, a, b\right\}$ share an edge. If $\left\{u_{1}, a, b\right\}$ hits X, then assume the vertex u_{1} hits $x \in X$. It follows that $x, u_{1}, u_{2}, u_{3}, u_{4}, u_{5}+\left\{u_{2} b, u_{3} c, c d\right\}$ is T_{8} in G.

Otherwise, $\left\{u_{1}, a, b\right\}$ misses X. Since $\delta(G) \geq 4$, we see that each vertex in $\left\{u_{1}, a, b\right\}$ hits the vertex u_{2} as well as at least three vertices in $\left\{u_{3}, u_{4}, u_{5}, c, d\right\}$. If a vertex in $\left\{u_{1}, a, b\right\}$ hits c and a different vertex in $\left\{u_{1}, a, b\right\}$ hits d, then assume that u_{1} hits d, and b hits c. It follows that $d, u_{1}, u_{2}, u_{3}, u_{4}, u_{5}+\left\{u_{2} a, u_{3} c, c b\right\}$ is T_{8} in G.

Otherwise, if a vertex in $\left\{u_{1}, a, b\right\}$ hits c, then the other two vertices in $\left\{u_{1}, a, b\right\}$ miss d. If a vertex in $\left\{u_{1}, a, b\right\}$ hits u_{4} and a different vertex in $\left\{u_{1}, a, b\right\}$ hits u_{5}, then assume that a hits u_{4}, and u_{1} hits u_{5}. It follows that $u_{5}, u_{1}, u_{2}, u_{3}, u_{4}, a+\left\{u_{2} b, u_{3} c, c d\right\}$ is T_{8} in G.

Otherwise, if a vertex in $\left\{u_{1}, a, b\right\}$ hits u_{4}, then the other two vertices in $\left\{u_{1}, a, b\right\}$ miss u_{5}. If a vertex in $\left\{u_{1}, a, b\right\}$ hits either both c and d, or both u_{4} and u_{5}, then assume that the vertex b hits both c and d. This implies that $\left\{u_{1}, a\right\}$ misses $\{c, d\}$, and $N\left(u_{1}\right)=N(a)=\left\{u_{2}, u_{3}, u_{4}, u_{5}\right\}$, a contradiction (since the vertex a hits u_{4}, and the vertex u_{1} hits u_{5}).

Otherwise, no vertex in $\left\{u_{1}, a, b\right\}$ hits either both c and d, or both u_{4} and u_{5}. Since $\delta(G) \geq 4$, we see that each vertex in $\left\{u_{1}, a, b\right\}$ has precisely the same neighborhood. Specifically, all three vertices in $\left\{u_{1}, a, b\right\}$ hit both vertices u_{2} and u_{3}, exactly one vertex in $\{c, d\}$, and exactly one vertex in $\left\{u_{4}, u_{5}\right\}$. Assume that each vertex in $\left\{u_{1}, a, b\right\}$ hits both c and u_{5} (if each vertex in $\left\{u_{1}, a, b\right\}$ hits d instead of c, or u_{4} instead of u_{5}, then the proof is similar). It follows that $N\left(u_{1}\right)=N(a)=N(b)=\left\{u_{2}, u_{3}, c, u_{5}\right\}$, and $u_{3}, u_{1}, u_{2}, b, u_{5}, u_{4}+$ $\left\{u_{2} a, b c, c d\right\}$ is T_{8} in G.

Case 2.3. Trees of diameter 6 .
Let P be a path, where $P=v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, v_{7}$. Since each of the trees T_{9} through T_{13} in this case has diameter 6 , we will use the path P in the definition of each tree. The remaining two vertices used in the tree definitions will be x and y, and the two remaining edges will be stated in each case.

Case 2.3.1. $T_{9}=P+\left\{v_{2} x, v_{3} y\right\}$
T_{9}

T^{\prime}

Let $T^{\prime} \subseteq G$ be the tree $u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, u_{6}+\left\{u_{2} a, u_{3} b, u_{5} c\right\}$ in G. We know that T^{\prime} is a subgraph of G because $T^{\prime}=T_{2}$ (see Case 1.2.). Let $X=V(G)-V\left(T^{\prime}\right)$.

If $\left\{u_{6}, c\right\}$ hits X, then assume the vertex u_{6} hits $x \in X$. Thus, $u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, u_{6}, x+$ $\left\{u_{2} a, u_{3} b\right\}$ is T_{9} in G.

Otherwise, $\left\{u_{6}, c\right\}$ misses X. If the vertex u_{6} hits c, then $u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, u_{6}, c+$ $\left\{u_{2} a, u_{3} b\right\}$ is T_{9} in G.

Otherwise, u_{6} misses c. If $\left\{u_{6}, c\right\}$ hits u_{4}, then assume the vertex c hits u_{4}. It follows that $u_{1}, u_{2}, u_{3}, u_{4}, c, u_{5}, u_{6}+\left\{u_{2} a, u_{3} b\right\}$ is T_{9} in G.

Otherwise, $\left\{u_{6}, c\right\}$ misses u_{4}. If $\left\{u_{6}, c\right\}$ hits $\left\{u_{1}, a\right\}$, then assume the vertex c hits u_{1}. Thus, $u_{4}, u_{3}, u_{2}, u_{1}, c, u_{5}, u_{6}+\left\{u_{3} b, u_{2} a\right\}$ is T_{9} in G.

Otherwise, $\left\{u_{6}, c\right\}$ misses $\left\{u_{1}, a\right\}$. Since $\delta(G) \geq 4$, it follows that the neighborhood of each vertex u_{6} and c is $\left\{u_{2}, u_{3}, b, u_{5}\right\}$, and $u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, u_{6}, b+\left\{u_{2} a, u_{3} c\right\}$ is T_{9} in G.

Case 2.3.2. $T_{10}=P+\left\{v_{2} x, v_{4} y\right\}$

Let $T^{\prime} \subseteq G$ be the tree $u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, u_{6}, u_{7}+\left\{u_{2} a, u_{6} b\right\}$ in G. We know that T^{\prime} is a subgraph of G since T^{\prime} is a double-broom (by Theorem 1.4). Let $X=V(G)-V\left(T^{\prime}\right)$.

If the vertex u_{4} hits a vertex $x \in X$, then $u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, u_{6}, u_{7}+\left\{u_{2} a, u_{4} x\right\}$ is T_{6} in G.

Otherwise, u_{4} misses X. If the vertex u_{4} hits $\left\{u_{1}, a, u_{7}, b\right\}$, then assume that u_{4} hits b. Thus, $u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, u_{6}, u_{7}+\left\{u_{2} a, u_{4} b\right\}$ is T_{6} in G.

Otherwise, u_{4} misses $\left\{u_{1}, a, u_{7}, b\right\}$. Since $\delta(G) \geq 4$, we see that $N\left(u_{4}\right)=\left\{u_{2}, u_{3}, u_{5}, u_{6}\right\}$. If $\left\{u_{1}, a, u_{7}, b\right\}$ hits X, then assume that the vertex u_{7} hits $x \in X$. It follows that $u_{1}, u_{2}, u_{3}, u_{4}, u_{6}, u_{7}, x+\left\{u_{2} a, u_{4} u_{5}\right\}$ is T_{6} in G.

Otherwise, $\left\{u_{1}, a, u_{7}, b\right\}$ misses X. If the vertex u_{1} hits a, or the vertex u_{7} hits b, then assume that u_{7} hits b. It follows that $u_{1}, u_{2}, u_{3}, u_{4}, u_{6}, u_{7}, b+\left\{u_{2} a, u_{4} u_{5}\right\}$ is T_{6} in G.

Otherwise, the vertex u_{1} misses a, and the vertex u_{7} misses b. If $\left\{u_{1}, a\right\}$ hits u_{6}, or $\left\{u_{7}, b\right\}$ hits u_{2}, then assume that the vertex a hits u_{6}. It follows that $u_{7}, u_{6}, a, u_{2}, u_{3}, u_{4}, u_{5}+$ $\left\{u_{6} b, u_{2} u_{1}\right\}$ is T_{6} in G.

Otherwise, $\left\{u_{1}, a\right\}$ misses u_{6}, and $\left\{u_{7}, b\right\}$ misses u_{2}. Notice that $N(a), N\left(u_{1}\right) \subseteq$ $\left\{u_{2}, u_{3}, u_{5}, u_{7}, b\right\}$, and $N(b), N\left(u_{7}\right) \subseteq\left\{u_{1}, a, u_{3}, u_{5}, u_{6}\right\}$. Since $\delta(G) \geq 4$, we see that the vertex a hits either vertex u_{7} or b; assume that a hits b. Since either vertex a or b has degree at least 5 (by Corollary 1.6), assume that $d(a) \geq 5$. It follows that $N(a)=\left\{u_{2}, u_{3}, u_{5}, u_{7}, b\right\}$, and $u_{1}, u_{2}, u_{4}, u_{6}, u_{7}, a, b+\left\{u_{2} u_{3}, u_{6} u_{5}\right\}$ is T_{6} in G.

Case 2.3.3. $T_{11}=P+\left\{v_{2} x, v_{5} y\right\}$
T_{11}

T'

Let $T^{\prime} \subseteq G$ be the tree $u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, u_{6}+\left\{u_{2} a, u_{5} b, u_{5} c\right\}$ in G. We know that T^{\prime} is a subgraph of G since T^{\prime} is a double-broom (by Theorem 1.4). Let $X=V(G)-V\left(T^{\prime}\right)$.

If two of the vertices in $\left\{u_{6}, b, c\right\}$ share an edge, then assume the vertex u_{6} hits c. It follows that $u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, u_{6}, c+\left\{u_{2} a, u_{5} b\right\}$ is T_{11} in G.

Otherwise, no two vertices in $\left\{u_{6}, b, c\right\}$ share an edge. If $\left\{u_{6}, b, c\right\}$ hits X, then assume the vertex u_{6} hits $x \in X$. It follows that $u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, u_{6}, x+\left\{u_{2} a, u_{5} b\right\}$ is T_{11} in G.

Otherwise, $\left\{u_{6}, b, c\right\}$ misses X. If $\left\{u_{6}, b, c\right\}$ hits $\left\{u_{1}, a\right\}$, then assume the vertex u_{6} hits u_{1}. Thus, $b, u_{5}, u_{4}, u_{3}, u_{2}, u_{1}, u_{6}+\left\{u_{5} c, u_{2} a\right\}$ is T_{11} in G.

Otherwise, $\left\{u_{6}, b, c\right\}$ misses $\left\{u_{1}, a\right\}$. Since $\delta(G) \geq 4$, we see that the neighborhood of each of the three vertices in $\left\{u_{6}, b, c\right\}$ is $\left\{u_{2}, u_{3}, u_{4}, u_{5}\right\}$, and $u_{1}, u_{2}, u_{3}, u_{6}, u_{4}, u_{5}, b+$ $\left\{u_{2} a, u_{4} c\right\}$ is T_{11} in G.
Case 2.3.4. $T_{12}=P+\left\{v_{3} x, v_{4} y\right\}$
T_{12}

T'

Let $T^{\prime} \subseteq G$ be the tree $u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, u_{6}+\left\{u_{3} a, u_{4} b, u_{5} c\right\}$ in G. We know that T^{\prime} is a subgraph of G because $T^{\prime}=T_{1}$ (see Case 1.1.). Let $X=V(G)-V\left(T^{\prime}\right)$.

If $\left\{u_{6}, c\right\}$ hits X, then assume that the vertex u_{6} hits $x \in X$. It follows that $u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, u_{6}, x+$ $\left\{u_{3} a, u_{4} b\right\}$ is T_{12} in G.

Otherwise, $\left\{u_{6}, c\right\}$ misses X. If the vertex u_{6} hits c, then $u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, u_{6}, c+$ $\left\{u_{3} a, u_{4} b\right\}$ is T_{12} in G.

Otherwise, the vertex u_{6} misses c. If $\left\{u_{6}, c\right\}$ hits u_{1}, then assume the vertex u_{6} hits u_{1}. Thus, $c, u_{5}, u_{4}, u_{3}, u_{2}, u_{1}, u_{6}+\left\{u_{4} b, u_{3} a\right\}$ is T_{12} in G.

Otherwise, $\left\{u_{6}, c\right\}$ misses u_{1}. If $\left\{u_{6}, c\right\}$ hits u_{4}, then assume the vertex u_{6} hits u_{4}. It follows that $u_{1}, u_{2}, u_{3}, u_{4}, u_{6}, u_{5}, c+\left\{u_{3} a, u_{4} b\right\}$ is T_{12} in G.

Otherwise, $\left\{u_{6}, c\right\}$ misses u_{4}. If $\left\{u_{6}, c\right\}$ hits a, then assume the vertex u_{6} hits a. Thus, $a, u_{6}, u_{5}, u_{4}, u_{3}, u_{2}, u_{1}+\left\{u_{5} c, u_{4} b\right\}$ is T_{12} in G.

Otherwise, $\left\{u_{6}, c\right\}$ misses a. Since $\delta(G) \geq 4$, we see that each vertex u_{6} and c has neighborhood $\left\{u_{2}, u_{3}, b, u_{5}\right\}$, and $u_{6}, u_{5}, u_{4}, u_{3}, c, u_{2}, u_{1}+\left\{u_{4} b, u_{3} a\right\}$ is T_{12} in G.
Case 2.3.5. $T_{13}=P+\left\{v_{3} x, v_{5} y\right\}$
T_{13}

T'

Let $T^{\prime} \subseteq G$ be the tree $u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, u_{6}+\left\{u_{3} a, u_{5} b, u_{5} c\right\}$ in G. We know that T^{\prime} is a subgraph of G since T^{\prime} has a vertex with three leaf neighbors (by Theorem 1.1). Let $X=V(G)-V\left(T^{\prime}\right)$.

If two of the vertices in $\left\{u_{6}, b, c\right\}$ share an edge, then assume the vertex u_{6} hits c. It follows that $u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, u_{6}, c+\left\{u_{3} a, u_{5} b\right\}$ is T_{13} in G.

Otherwise, no two vertices in $\left\{u_{6}, b, c\right\}$ share an edge. If $\left\{u_{6}, b, c\right\}$ hits X, then assume the vertex u_{6} hits $x \in X$. It follows that $u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, u_{6}, x+\left\{u_{3} a, u_{5} b\right\}$ is T_{13} in G.

Otherwise, $\left\{u_{6}, b, c\right\}$ misses X. If a vertex in $\left\{u_{6}, b, c\right\}$ hits the vertex u_{3}, and a different vertex in $\left\{u_{6}, b, c\right\}$ hits the vertex a, then assume that b hits u_{3}, and u_{6} hits a. It follows that $u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, u_{6}, a+\left\{u_{3} b, u_{5} c\right\}$ is T_{13} in G.

Otherwise, if a vertex in $\left\{u_{6}, b, c\right\}$ hits the vertex u_{3}, then the other two vertices in $\left\{u_{6}, b, c\right\}$ both miss the vertex a. If a vertex in $\left\{u_{6}, b, c\right\}$ hits the vertex u_{2}, and a different
vertex in $\left\{u_{6}, b, c\right\}$ hits the vertex u_{1}, then assume that b hits u_{2} and u_{6} hits u_{1}. It follows that $b, u_{2}, u_{3}, u_{4}, u_{5}, u_{6}, u_{1}+\left\{u_{3} a, u_{5} c\right\}$ is T_{13} in G.

Otherwise, if a vertex in $\left\{u_{6}, b, c\right\}$ hits the vertex u_{2}, then the other two vertices in $\left\{u_{6}, b, c\right\}$ both miss the vertex u_{1}. If a vertex in $\left\{u_{6}, b, c\right\}$ hits both u_{1} and u_{2}, then assume that the vertex c hits both u_{1} and u_{2}. It follows that $\left\{b, u_{6}\right\}$ misses $\left\{u_{1}, u_{2}\right\}$. Since $\delta(G) \geq 4$, this implies that $N(b)=N\left(u_{6}\right)=\left\{u_{3}, u_{4}, u_{5}, a\right\}$, a contradiction (since the vertex b hits u_{3}, and the vertex u_{6} hits a).

Otherwise, no vertex in $\left\{u_{6}, b, c\right\}$ hits both u_{1} and u_{2}. If a vertex in $\left\{u_{6}, b, c\right\}$ hits both u_{3} and a, then assume that the vertex c hits both u_{3} and a. It follows that $\left\{b, u_{6}\right\}$ misses $\left\{u_{3}, a\right\}$. This implies that $N(b)=N\left(u_{6}\right)=\left\{u_{1}, u_{2}, u_{4}, u_{5}\right\}$, a contradiction (since the vertex b hits u_{2}, and the vertex u_{6} hits u_{1}).

Otherwise, no vertex in $\left\{u_{6}, b, c\right\}$ hits both u_{3} and a. Since $\delta(G) \geq 4$, this implies that the three vertices in $\left\{u_{6}, b, c\right\}$ have precisely the same neighborhoods. Specifically, each vertex in $\left\{u_{6}, b, c\right\}$ hits both u_{4} and u_{5}, as well as exactly one vertex from $\left\{u_{3}, a\right\}$, and exactly one vertex from $\left\{u_{1}, u_{2}\right\}$.

If each vertex in $\left\{u_{6}, b, c\right\}$ hits the vertex u_{1}, then $u_{5}, b, u_{1}, u_{2}, u_{3}, u_{4}, u_{6}+\left\{u_{1} c, u_{3} a\right\}$ is T_{13} in G. Otherwise, each vertex in $\left\{u_{6}, b, c\right\}$ misses u_{1}. This implies that each vertex in $\left\{u_{6}, b, c\right\}$ hits u_{2}, and $a, u_{3}, u_{2}, c, u_{5}, u_{6}, u_{4}+\left\{u_{2} u_{1}, u_{5} b\right\}$ is T_{13} in G.

References

[1] M.Ajtai, M.Simonovits, E. Szemerédi. Solution of the Erdős-Sós Conjecture, Presentation at Bondy Conference, Montreal, 2003.
[2] G.Fan, Y.Hong, Q.Liu. On the Erdős-Sós Conjecture for Spiders, arXiv:1804.06567v2, (2018).
[3] N.Eaton, G.Tiner. On the Erdős-Sós Conjecture and Graphs with large minimum degree, Ars Combinatoria. 95 (2010) 373-382.
[4] N.Eaton, G.Tiner. On the Erdős-Sós Conjecture for graphs having no path with $k+4$ vertices, Discrete Mathematics. 313 (16) (2013) 1621-1629.
[5] P.Erdős, T.Gallai. On maximal paths and circuits of graphs, Acta Math. Acad. Sci. Hungar. 10 (1959) 337-356.
[6] A.McLennan. The Erdős-Sós Conjecture for Trees of Diameter Four, J. of Graph Theory. 49 (2005) 291-301.
[7] A.F.Sidorenko. Asymptotic solution for a new class of forbidden r-graphs, Combinatorica. 9 (1989) 207-215.
[8] P.Slater, S.Teo, H.Yap. Packing a Tree with a Graph of the Same Size, J. Graph Theory. 9 (1985) 213-216.
[9] G.Tiner. On the Erdős-Sós Conjecture and double-brooms, JCMCC. 93 (2015) 291296.
[10] G.Tiner. On the Erdős-Sós Conjecture for Graphs on $n=k+3$ Vertices, Ars Combinatoria. 95 (2010) 143-150.
[11] M.Woźniak. On the Erdős-Sós Conjecture, J. of Graph Theory. 21 (1996) 229-234.
[12] L.Yuan, X.Zhang. On the Erdős-Sós Conjecture for Graphs on $n=k+4$ Vertices, Ars Mathematica Contemporanea. 13.1 (2017) 49-61.
[13] B.Zhou. A note on the Erdős-Sós Conjecture, Acta Math. Sci. 4 (1984) 287-289.

[^0]: ${ }^{*}$ Corresponding Author.
 Email addresses: gtiner@faulkner.edu, zachery.tomlin@faulkner.edu
 Received: May 30, 2020; Accepted: March 27, 2021

