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Abstract

Ralph Fox’s p-colorings offer the simplest yet effective invariants of knots. This exposition,
based on the 2020 Lewis-Parker Lecture delivered by the author, introduces the method
of knot coloring as well as some historical background.
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1. “My soul is an entangled knot..." – physicist James Clerk Maxwell

Knot theory is an active area of mathematical research. Nevertheless its main object of
study and its primary goal can be described with only a handful of words. Think of a knot
as an elastic cord tangled up with its ends connected. Given two knots, decide whether
they are the same, that is, whether one can be deformed to appear identical to the other.

We can prove that two knots are the same by performing a clever deformation. But
how can we tell that two knots are not the same? We cannot physically test every possible
deformation.

As an example, consider the three knots depicted in Figure 1. Two of them are the
same. Can you decide which two?

Figure 1. Which pair of knots are the same?
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Knots 2 and 3 are in fact the same, something that the diligent reader can verify with
a piece of string. However, showing that knot 1 is different requires a mathematical idea.
We present a simple, colorful idea that can be used to show that knot 1 is the odd knot
out. It can also be used to distinguish many other pairs of knots. It is the method of knot
colorings.

Knot colorings were the idea of the Princeton topologist Ralph Fox, who introduced
them in 1956. To apply them we need only elementary ideas of linear algebra.

Figure 2. Ralph Fox at the celebration of his 60th birthday. (The autographed
photograph was a gift to the author by Wilbur Whitten.)

2. A wee bit o’ knot theory and its history

We are taking an informal approach to knot theory. The reader can find more details
in one of the many excellent books on the subject (e.g. [2–4]).

A knot is a smoothly embedded circle in R
3. Two knots are equivalent if one can be

smoothly deformed to be identical with the other. Such a deformation allows bending,
stretching and shrinking, for example, but not breaking or pulling so tightly that a singu-
larity is created. We regard equivalent knots as the same.

While knots attracted the interest of 18th and early 19th-century mathematicians such
as Alexandre-Théophile Vandermonde and Carl Friedrich Gauss, they became the subject
of sustained study only later when the Scottish physicist Peter Guthrie Tait began classify-
ing them. Tait’s inspiration came from Lord Kelvin’s “vortex atom theory," a theory that
atoms are small knots of an invisible, frictionless fluid called ether, a substance believed
to permeate all of space. Tait began an ambitious program of knot tabulation in 1876
with the expectation that he was classifying the chemical elements. We call it “ambitious"
because he had few topological theorems or techniques to aid him. What Tait did have
was marvelous mathematical intuition.

Tait interested his life-long friend James Clerk Maxwell in the study of knots. Maxwell,
one of the greatest scientific minds of the 19th century, had both a sense of play and a
sense of humor. He was also something of a poet. Playing with lyrics to John Gay’s The
Beggar’s Opera, Maxwell wrote to Tait: "How happy I could be with ether!"

Unfortunately for Lord Kelvin, no ether was ever found. The vortex atom theory died,
but modern knot theory had been born.
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Figure 3. Peter Guthrie Tait (left); James Clerk Maxwell with wife and dog (right)

3. “Color is the place where our brain and the universe meet.” – artist
Paul Klee

The easiest way to describe a knot is to present a type of picture called a knot diagram.
It is a projection D of the knot in the plane seen as a 4-regular graph with a hidden line
effect in a neighborhood of each vertex indicating how one part of the knot passes over
another. (Figure 1 contains three examples of knot diagrams.) A maximal connected
subset of D is called an arc of the diagram. We leave it as an exercise to verify that the
number of arcs of D is the same as the number of crossings.

Figure 4 shows some local changes of any knot diagram that do not change the knot. By
a “local change" we mean a change that leaves points outside of the picture fixed. The 0th
change should be regarded as any smooth deformation that does not introduce or destroy
any crossings. (Such changes typically involve bending, stretching or shrinking.)

Figure 4. Reidemeister moves

The local changes in Figure 4 are called Reidemeister moves. They are named after
Kurt Reidemeister, who proved in 1927 that if two diagrams represent the same knot,
then some finite sequence of the moves will convert one diagram into the other. Figure 5
illustrates an application of a Reidemeister move of type (ii) followed by a move of type
(i).
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Figure 5. Reidemeister move of type (ii) followed by a move of type (i)

Reidemeister’s theorem is remarkable for at least two reasons. First, the theorem shows
us that knot theory can be approached as combinatorics by studying knot diagrams and
Reidemeister moves. Secondly, it implies that quantities (e.g., numbers, vector spaces,
polynomials) associated to a knot diagram that are unchanged by Reidemeister moves
are in fact invariants of the knot. If such a quantity takes different values on two knot
diagrams, then the knots that the diagrams represent are different. QED!

By coloring knot diagrams, we will find some of the simplest yet effective knot invariants.
Let Z/p denote the field of integers modulo prime p. Elements are 0, 1, 2, . . . , p − 1.

(Remember that a + b is the remainder upon division by p.) Knot theorists like to call
0, 1, 2, . . . , p − 1 colors. There is no mathematical need to do this. However, thinking
about elements of Z/p as colors enlivens our imagination.

Figure 6. Visualizing mod-3 colors

A p-coloring of a knot diagram D is a labeling of the arcs by colors a, b, c, . . . so that
at any crossing the p-coloring relation is satisfied: 2a − b − c = 0 modulo p, where a is
the color of the over-crossing arc and b, c are the colors of the other two arcs. (For other
approaches to knot coloring see [1].)

Figure 7. p-coloring relation

Any knot diagram can be p-colored by assigning the same color to every arc. Such
monochromatic p-colorings are uninteresting. We will eliminate all of them with the
exception of the trivial p-coloring, the p-coloring that assigns 0 to every arc, by selecting
a base arc and requiring that it receive the color 0.
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When p = 3, our p-coloring relation is pleasingly simple. It can be restated by the
requirement that at every crossing all colors are different or else they are the same. A few
examples appear in Figure 8.

Figure 8. Three 3-colorings of a knot diagram

Since the coloring relation is linear, we can add two p-colorings arc-wise to get another
p-coloring. For example:

Figure 9. Adding 3-colorings

We can also multiply p-coloring by elements of Z/p. In fact the p-colorings of a diagram
D form a vector space. We will denote it by Colp(D) and call it the Fox p-coloring space
of D. The reader is encouraged to prove that the dimension of the space does not depend
on our choice of base arc.

By now you might have guessed that for any prime p the Fox p-coloring space is a knot
invariant. Proving it is surprisingly easy. We will present part of the proof, leaving the
rest as an exercise.

Theorem 3.1. If D and D′ are diagrams of the same knot, then Colp(D) and Colp(D′)
are isomorphic, for any prime p.

Proof. It suffices to assume that D′ is obtained from D by a single Reidemeister move.
We consider Reidemeister move (ii), and check that c is uniquely determined by a and b,
and also that d = a.

Figure 10. The color c is uniquely determined by colors a and b.
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Any p-coloring of D corresponds to a p-coloring of D′, and conversely. Moreover, the
correspondence respects addition and scalar multiplication. Reidemeister moves of types
(i) and (iii) are handled similarly. �

If D is a diagram of a knot k, then by Theorem 3.1 we can write Colp(k) instead of
Colp(D). Any other diagram for k would produce an isomorphic vector space. We will
call Colp(k) the Fox p-coloring space of k.

4. “If two people always agree, one of them is redundant." – Ben Bernanke,
former Chair of the Federal Reserve

When we p-color a knot diagram D, we discover that not all of the relations at the
crossings are needed. As Lemma 4.1 below asserts, any single relation is redundant. This
non-trivial fact is a consequence of the topology of the plane. Most proofs involve a good
dose of algebraic topology. However, the proof that we present is elementary. Also, it
gives a taste of low-dimensional topology techniques. Those in a hurry are welcome to
skip over the proof during their first reading.

Lemma 4.1. Let D be a knot diagram and p a prime. Then any p-coloring relation is a
linear combination of the remaining p-coloring relations of D.

Proof. If the knot diagram D has no crossings, then there is nothing to prove. Therefore
we assume that D has at least one crossing.

Consider what happens when we follow the path of a small circle around any crossing
and record the colors that we see as an alternating sum, first positive then negative. If
the first arc we meet is an over-crossing, then the sum we get is the p-coloring relation of
the crossing. On the other hand, if the first arc is not an over-crossing, then we obtain
the p-coloring relation multiplied by −1. An example is given in Figure 11.

Figure 11. Reading the relation around a crossing (starting at the arrowhead)

We place a small circle about every crossing of D, remove small intervals from the circles
in order to join the results together by narrow double arcs disjoint from D and create a
single simple closed curve Γ, as in Figure 12. (There are many ways to do this.) Beginning
at any point of Γ and traveling around it in either direction, we attach alternating signs
±, beginning with +, to the points of Γ ∩ D, as in Figure 12.

Let Σ be the alternating sum of the labels of the arcs that we cross, with signs corre-
sponding to those of the points of Γ∩D. Every circle contributes the p-coloring relation of
the enclosed crossing or else the relation multiplied by −1. (Although the path around a
circle might be interrupted as we travel along Γ, the detour meets D in a number of points
that is even, in fact a multiple of 4, and hence the pattern of sign alternation around
each circle is preserved.) We complete the proof by showing that the weighted sum Σ of
p-coloring relations is zero.
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The curve Γ separates the plane into two regions. One region is bounded, topologically
a disk, and contains all the crossings of D. The other region is unbounded. We follow the
knot diagram from any point in either direction. If an arc of D crosses Γ at a point P and
enters the unbounded region, it must eventually return to the bounded region. When it
returns, it crosses Γ at a point Q with the opposite sign of P . To see why, consider the set
of all arc segments in the unbounded region. They cannot intersect each other since all the
crossings of D are contained in the bounded region. Either P and Q are consecutive points
of Γ ∩ D (as encountered as we travel along Γ) or else they are separated by other arc
segments and hence by an even number of intersection points. In either case, P and Q have
opposite signs, and so their combined contribution to Σ vanishes. Since all contributions
to Σ arise from endpoints of the such arc segments, Σ is zero. �

Example 4.2. We illustrate the ideas of the proof of Lemma 4.1. Consider the diagram
of Knot 2 as it appears in on the left-hand side of Figure 12. The closed curve Γ is blue.
We compute Σ as we travel around Γ, beginning at the arrowhead. To see that the terms
cancel in pairs, consider the disk that Γ bounds. The segments of the arcs of D that leave
and reenter the disk are indicated on the right-hand side of Figure 12. Note that between
the endpoints of any arc segment there are an even number of points. The signs of the
endpoints of each arc segment are opposite, and so the terms of Σ cancel in pairs.

The vanishing sum Σ can be rewritten as (2a − b) + (2b − a − c) − (2b − d) − (2a − c −
d) − (2d − a − b), a linear combination of the p-coloring relations.

Figure 12. Diagram D and closed curve Γ (left); arc segments (right)

5. “Color is my daylong obsession, joy, and torment.” – artist Claude
Monet

Given a knot k and a prime p, we are now in position to determine the Fox p-coloring
space Colp(k). First, choose a diagram D for k. Then select a base arc, and label the
other arcs by a1, . . . , an. (If there are only a few arcs, then we can avoid subscripts by
using a, b, c, ... instead.) Build an n × n matrix M with rows corresponding to the arcs of
D and columns corresponding to any n − 1 of the p-coloring relations. Which relation we
omit will be unimportant thanks to Lemma 4.1. We call M a coloring matrix of D.

Proposition 5.1. Assume that D is a diagram of a knot k and p is a prime. If M is a
coloring matrix of D, then Colp(k) is a nontrivial vector space if and only if |Det(M)| is
divisible by p.
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The proof of Proposition 5.1 follows immediately from what has already been said. We
can conclude a bit more: the p-colorings of D correspond to the vectors in the column
mod-p null space of M . Remember that the base arc always receives the color 0.

Example 5.2. Consider Knot 1 of Figure 1. With the arcs of its diagram labeled and
crossings numbered as in Figure 13, we have

M =









2 −1 0 −1
−1 2 −1 0
0 0 −1 −1
0 −1 0 2









.

Since |Det(M)| = 7, the diagram can be non-trivially p-colored only for p = 7. The reader
can verify that a = 5, b = 3, c = 4, d = 1 is a 7-coloring of the diagram.

Figure 13. Knot 1

Consider Knot 2 of Figure 1 with diagram labeled as in Figure 14.

Figure 14. Knot 2

For this diagram we have:

M =









2 −1 0 0
−1 2 −1 0
0 2 0 −1
2 0 −1 −1









.

Here |Det(M)| = 5, and so the diagram can be non-trivially p-colored only for p = 5. The
reader can verify that a = 4, b = 3, c = 2, d = 1 is a 5-coloring.

In view of Proposition 5.1, we have now shown that knots 1 and 2 are in fact different.
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6. How Happy Tait Would Have Been!

For any knot k, the set of primes p for which a diagram of k can be non-trivially
p-colored is an invariant of the knot. We will call it the knot spectrum of k.

Proposition 6.1. The knot spectrum of any knot is finite.

Proof. Suppose that the knot k has an infinite knot spectrum. If M is a coloring matrix for
a diagram D of k, then |Det(M)| is divisible by an infinite number of primes, which implies
that Det(M) = 0. Since 2 divides Det(M), Proposition 5.1 implies that the diagram
D can be non-trivially 2-colored. However, the only 2-colorings of a knot diagram are
constant. Since the base arc of D receives the color zero, D can be 2-colored only trivially,
contradicting our initial assumption. Hence the knot spectrum of k is finite. �

Knot spectra are reminiscent of the atomic spectral lines of an atom, the characteristic
lines that elements display in the flame of a Bunsen burner. Had Tait known about p-
colorings in the early, heady days of his investigation of the vortex atom theory, how
happy he would have been! Undoubtedly, he would have seen it as more evidence of Lord
Kelvin’s theory that elements were knots of ether.

But analogies go only so far. While no two elements share the same atomic spectral
lines, two knots can have the same knot spectrum. In fact, there are infinitely many
different knots having an empty knot spectrum! (Fortunately, we have other invariants
that can distinguish knots.)

We hope that the reader has been inspired to learn more about knot theory. It is a rich
subject that has developed in ways that Tait and Fox could never had imagined. While the
vortex atom theory has been forgotten, some modern knot theory techniques have now
drawn back the attention of physicists. We recommend browsing through some recent
issues of the journal Knot Theory and its Ramifications to get a feeling for some of these
developments.

Knot theory is still young. After all, the subject has been around for little more than
150 years. Knots seem like toys. However, our instincts tell us that knots model some
things in ways that we do not yet understand. Today knot theory is being used in studies
of DNA, hydrodynamics, robotics and more, but it is possible that the most important
applications are waiting to be discovered.

Acknowledgement. I am grateful to the AACTM for inviting me to present the 2020
Lewis-Parker Lecture. Also, I am thankful to Susan G. Williams for her many insightful
comments and helpful suggestions.
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