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Abstract
The subsum set of a series

∑∞
n=1 an is the set of all numbers x such that x =

∑∞
n=1 cnan,

where {cn} is a sequence consisting only of 0’s and 1’s. In this paper we describe a natural
way to construct the subsum set of a series which is similar to the process used to construct
the Cantor set. We then show how this construction leads to easy proofs of some known
results, after which we present a few new results.
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1. Introduction
A paper by Johnson and Malin (P. Johnson and C. Malin, (2017)) defined the subsum of

a series of non-negative terms and proved some interesting results. Recently several papers
have been published on this topic. The main goal of this article is to describe a natural
way to construct the set of all subsums of a series, and to show how this construction
leads to two standard results. We will then describe our own new results. Finally we will
acquaint readers with some of the recent developments in the field.

Formally, a number x is a subsum of the series
∑∞
n=1 an if x =

∑∞
n=1 cnan, where {cn}

is a sequence consisting only of 0’s and 1’s. The subsum set of a series is the set of all
possible subsums of the series. For example, a subsum of the series

∑∞
n=1

1
2n has the form∑∞

n=1
cn
2n , where cn = 0 or 1 for each n. Hence each subsum has the form 0.c1c2c3 . . . in

binary notation. Since every real number in [0, 1] can be written in this form, and the
sum of

∑∞
n=1

1
2n is 1, it follows that the subsum set is [0, 1]. The series

∑∞
n=1

2
3n also has

sum 1, and its subsums have the form
∑∞
n=1

2cn
3n where cn = 0 or 1 for each n. These are

all the numbers in the interval [0, 1] which can be written in base 3 notation without a 1.
In fact, it is the well-known Cantor set.

In the main result of this paper, we show that the subsum set of a convergent series of
positive terms can be obtained by a construction similar to the standard construction of
the Cantor set. Some old results then follow easily as corollaries.
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2. The Cantor-like Construction
The first results on subsum sets were published by Kakeya (S. Kakeya, (1914)) We state

them here.
Theorem 2.1. Kakeya’s Results Let

∑∞
n=1 an be a convergent series of positive terms and

let S be its subsum set.
(i) If an ≤

∑∞
i=n+1 ai for all but finitely many n, then S is a finite union of closed

and bounded intervals.
(ii) Furthermore, if {an} is a non-increasing sequence and S is a finite union of closed

and bounded intervals, then an ≤
∑∞
i=n+1 ai for all but finitely many n.

(iii) If an >
∑∞
i=n+1 ai for all but finitely many n, then S is homeomorphic to the

Cantor set.
In the usual construction of the Cantor set, we begin with the closed interval and remove

the open middle third
(

1
3 ,

2
3

)
, leaving the closed set F1 =

[
0, 1

3

]
∪
[

2
3 , 1
]
. From each interval

of F1 we remove the open middle third, leaving, F2 =
[
0, 1

9

]
∪
[

2
9 ,

1
3

]
∪
[

2
3 ,

7
9

]
∪
[

8
9 , 1
]
. By

continuing this process, we get a nested sequence {Fn} of compact sets. The Cantor set
is defined to be ∩∞n=1Fn.

We could also think of the construction like this: note that each interval Fn has length
1

3n and that
∑∞
i=n+1

2
3i = 1

3n . Start with [0, 1] and create two closed intervals of length∑∞
i=2

2
3i = 1

3 , of which one has left endpoint 0 and the other has right endpoint 1. Then
F1 =

[
0, 1

3

]
∪
[

2
3 , 1
]
is the union of these two intervals. Suppose that Fn−1 has been defined

as the union of closed intervals. Then we define Fn to be the union of all intervals of the
form

[
x, x+

∑∞
i=n+1

2
3i

]
and

[
y −

∑∞
i=n+1

2
3i , y

]
for each interval [x, y] of Fn. Then ∩∞n=1Fn

is the Cantor set, and we have seen that it is also the subsum set of the series
∑∞
n=1

2
3n .

We will now describe a similar construction applied to a general convergent series with
positive terms, and will show that the resulting set is the subsum set of the series.

Let
∑∞
n=1 an be a convergent series of positive terms with sum s, and letRn =

∑∞
i=n+1 ai.

Define F1 = [0, R1] ∪ [s−R1, s] = [0, R1] ∪ [a1, s]. Suppose that Fn−1 has been defined
as the union of closed intervals of length Rn−1. Then we define Fn to be the union of
all intervals [x, x+Rn] and [y −Rn, y] for each interval [x, y] in Fn−1. That is, each
interval [x, y] of Fn−1 splits into the intervals [x, x+Rn] and [y −Rn, y] . (Note that both
[x, x+Rn] and [y −Rn, y] are contained in [x, y] because Rn < Rn−1 and [x, y] has length
Rn−1). Then {Fn} is a nested sequence of closed compact sets. By a standard result (S.
Krantz, (2005) p. 75),

⋂∞
n=1 Fn is nonempty. We will show that

⋂∞
n=1 Fn is the subsum

set of the series
∑∞
n=1 an.

Our first lemma gives a precise description of the sequence {Fn}.
Lemma 2.2. Fn=

⋃
(c1,c2,...,cn) [

∑n
i=1 ciai,

∑n
i=1 ciai +Rn], where ci = 0 or 1.

Proof. The proof is by induction on n. Setting n = 1 gives F1 = [0, R1] ∪
[
a1,a1 +R1

]
= [0, R1]∪ [a1, s], so the result is true for n = 1. Suppose it is true for Fn. Then from the
construction we have just described, it follows that

Fn+1=
⋃

(c1,c2,...,cn)

([ n∑
i=1

ciai,

n∑
i=1

ciai +Rn+1

]
∪
[ n∑

i=1
ciai +Rn −Rn+1,

n∑
i=1

ciai +Rn

])

=
⋃

(c1,c2,...,cn)

[
n∑
i=1

cia i + 0.an+1,
n∑
i=1

ciai +Rn+1

]
∪
[
n∑
i=1

ciai + an+1,
n∑
i=1

ciai + an+1 +Rn+1

]

=
⋃

(c1,c2,...,cn,cn+1)

[
n+1∑
i=1

ciai,
n+1∑
i=1

ciai +Rn+1

]
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which establishes the result. �

Lemma 2.3. Let
∑∞
n=1 an be a convergent series with positive terms. Then x is a subsum

of the series if and only if there exists a sequence {cn} of 0’s and 1’s such that for every
n,
∑n
i=1 ciai ≤ x ≤

∑n
i=1 ciai +Rn. In that case x =

∑∞
i=1 ciai.

Proof. Suppose x is a subsum of the series. Then there exists a sequence {cn} of 0’s and
1’s such that x =

∑∞
n=1 ciai. It follows that for every n,

n∑
i=1

ciai ≤ x =
n∑
i=1

ciai +
∞∑

i=n+1
ciai ≤

n∑
i=1

ciai +
∞∑

i=n+1
ai =

n∑
i=1

ciai +Rn.

Now suppose there exists a sequence {cn} of 0’s and 1’s such that for every n,
n∑
i=1

ciai ≤ x ≤
n∑
i=1

ciai +Rn.

Taking the limit as n→∞, we see that
∞∑
i=1

ciai ≤ x ≤
∞∑
i=1

ciai + lim
n→∞

R
n
.

Since
∑∞
n=1 an converges, limn→∞Rn = 0. Hence x =

∑∞
i=1 ciai, and so x is a subsum. �

Finally we are ready to prove our theorem.

Theorem 2.4. Let
∑∞
n=1 an be a convergent series of positive terms. Then the subsum

set S =
⋂∞
n=1 Fn.

Proof. Lemma 2.3 says that for each x ∈ S there is a sequence {cn} of 0’s and 1’s such
that for every n,

n∑
i=1

ciai ≤x ≤
n∑
i=1

ciai +Rn.

It follows from Lemma 2.2 that x ∈
⋂∞
n=1 Fn.

Now suppose x ∈
⋂∞
n=1 Fn. We will define a sequence {cn} with the property described

in Lemma 2.3. Let s be the sum of the series
∑∞
n=1 an. Then x ∈ F1 = [0, R1] ∪ [a1, s].

If x < a1, define c1 = 0; if x ≥ a1, define c1 = 1. In either case, c1a1 ≤ x ≤
c1a1 + R1. Suppose we have defined c1, c2, . . . , cn with the desired property. Then x ∈
[
∑n
i=1 ciai,

∑n
i=1 ciai +Rn]. Fn+1 contains both of the intervals [

∑n
i=1 ciai,

∑n
i=1 ciai +Rn+1]

and [
∑n
i=1 ciai + an+1,

∑n
i=1 ciai +Rn], and hence one of these intervals contains x. If

x <
∑n
i=1 ciai + an+1, define cn+1 = 0; if x ≥

∑n
i=1 ciai + an+1, define cn+1 = 1. In either

case,
n+1∑
i=1

ciai ≤ x ≤
n+1∑
i=1

ciai +Rn+1.

Thus a sequence with the property of Lemma 2 exists, and hence x ∈ S. �

3. Proof of Kakeya’s results
Throughout this section, let

∑∞
n=1 an be a convergent series of positive terms and let S

be its subsum set.

Corollary 3.1. If an ≤
∑∞
i=n+1 ai for all but finitely many n, then S is a finite union of

closed and bounded intervals.
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Proof. Suppose that an ≤ Rn =
∑∞
i=n+1 ai for all n ≥ N . We claim that Fn = FN for

all n ≥ N . Let n ≥ N. By Lemma 1, Fn =
⋃

(c1,c2,...,cn) [
∑n

i=1 ciai,
∑n
i=1 ciai +Rn].

We get Fn+1 by splitting each interval [
∑n

i=1 ciai,
∑n
i=1 ciai +Rn] into the intervals

[
∑n

i=1 ciai,
∑n
i=1 ciai +Rn+1] and [

∑n
i=1 ciai + an+1,

∑n
i=1 ciai +Rn]. Since an+1 ≤ Rn+1,∑n

i=1 ciai + an+1 ≤
∑n+1
i=1 ciai +Rn+1, and therefore the union of the two intervals is[ n∑

i=1
ciai,

n∑
i=1

ciai +Rn

]
.

It follows that Fn+1 = Fn for each n ≥ N , and hence Fn = FN for all n ≥ N . Since
S =

⋂∞
n=1 Fn and F1 ⊇ F2 ⊇ F3 ⊇ . . ., S = FN , which is the union of 2N closed and

bounded intervals.
�

Corollary 3.2. If {an} is a non-increasing sequence and S is a finite union of closed and
bounded intervals, then an ≤

∑∞
i=n+1 ai for all but finitely many n.

Proof. Let {an} be a non-increasing sequence and let S be a finite union of closed and
bounded intervals. Now suppose that an >

∑∞
i=n+1 ai for infinitely many n. We will show

that 0 does not belong to an interval contained in S. Since 0 ∈ S, this contradicts the
hypothesis that S is a finite union of closed and bounded intervals.

Let x ∈ S, x > 0. Since limn→∞ an = 0, there is m such that 0 < am < x. Since
an > Rn for infinitely many n, we can choose m such that both am < x and am > Rm are
true. Then Fm contains the disjoint intervals [0, Rm] and [am, am +Rm]. Since there is a
gap between Rm and am, there is no interval contained in S which contains both 0 and x.
This completes the proof. �

Corollary 3.3. S is homeomorphic to the Cantor set if an >
∑∞
i=n+1 ai for all but finitely

many n.

Proof. A subset of a metric space is homeomorphic to the Cantor set if it is compact,
perfect, and totally disconnected. (J. Hocking and G. Young, (1988), p. 100). Since S
is the intersection of a family of nested closed and bounded intervals, it is compact. (S.
Krantz (2005), p. 100). Recall that a set is perfect if it is nonempty and closed, and if
every point is a limit point. Let x ∈ S, and let ε > 0. Since limn→∞Rn = 0, there is n
such that Rn < ε

2 . Hence x lies in an interval of Fn with length less than ε
2 . This interval

must be contained in the interval (x− ε, x+ ε). Hence (x− ε, x+ ε) contains both the left
endpoint

∑n
i=1 ciai and the right endpoint

∑n
i=1 ciai +Rn of the interval of Fn, and both

endpoints are in S. Therefore (x− ε, x+ ε) contains a point different from x, and hence
x is a limit point of S.

To show that S is totally disconnected, it is sufficient to show that S does not contain
an interval. Suppose that an >

∑∞
i=n+1 ai for all n ≥ N . Consider the series

∑∞
i=N ai,

and let its sum be t. We will show that the subsum set T of the series
∑∞
i=N ai is totally

disconnected. The subsum set S of the original series
∑∞
i=1 ai is the union of a finite

number of translates of T . Since a finite union of totally disconnected subsets of the real
line is totally disconnected, it will follow that S is totally disconnected.

Define FN = [0, RN ]∪[aN , t], and define Fn for n > N as in the Cantor-like construction
described in Section 2. Since RN < aN , the two intervals are disjoint. By Lemma 2.2 a
component of Fn has the form [

∑n
i=N ciai,

∑n
i=N ciai +Rn].

In Fn+1, it splits into the intervals [
∑n
i=N ciai,

∑n
i=N ciai +Rn+1] and[

n∑
i=N

ciai + an+1,
n∑

i=N
ciai +Rn

]
,

which are disjoint, since Rn+1 < an+1. It follows by induction that for each n ≥ N , Fn
consists of 2n−N+1 disjoint intervals, each of length Rn.
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By Theorem 2.4, the subsum set T of the series
∑∞
i=N ai is equal to

⋂∞
n=N Fn. Let

x, y ∈ T . Since limn→∞Rn = 0, there is some n > N such that Rn < |x− y|. Then x and
y must belong to different intervals in Fn. Since different intervals are disjoint, there is
some point z strictly between x and y such that z /∈ Fn, and hence z /∈ T . Therefore T is
totally disconnected. As mentioned earlier, it follows that the same is true for S.

�

4. Series similar to geometric series
We state and prove a theorem for such series.

Theorem 4.1. Let
∑∞
n=1 an be a series of positive terms with sum s.

(a) If 1
2 ≤

an+1
an

< 1 for all n, then the subsum set S = [0, s].
(b) If an+1

an
< r for all n, where r is a constant such that 0 < r < 1

2 , then S is
homeomorphic to the Cantor set.

Proof. Proof of (a): Suppose 1
2 ≤

an+1
an

< 1 for all n. For each n ∈ N , it follows by
induction that an+i ≥ 1

2ian for all i ≥ 1. Therefore,

Rn =
∞∑

i=n+1
ai ≥

∞∑
i=1

1
2ian = an.

Now the proof of Corollary 3.1 goes through to show that S = [0, s].
Proof of (b): If an+1

an
< r for all n, then an+i < rian for all i ≥ 1, and

Rn =
∞∑

i=n+1
ai <

∞∑
i=1

rian = r

1− ran < an,

since 0 < r < 1
2 . By Corollary 3.1, S is homeomorphic to the Cantor set.

�

Corollary 4.2. Consider the geometric series
∑∞
n=1 ar

n. If 1
2 ≤ r < 1, the subsum set of

the series is
[
0, ar

1−r

]
. If 0 < r < 1

2 , the subsum set is homeomorphic to the Cantor set.

Proof. This follows directly from Theorem 4.1. �

5. Representations of a subsum
For the series

∑∞
n=1

1
2n the subsum 1

2 can also be expressed as
∑∞
n=2

1
2n . A theorem of

Menon (P. Menon (1948)) gives a necessary condition for the expression of a subsum to be
unique. We restate this result, and give a proof which is essentially the same as Menon’s
argument. We then state and prove a result which is almost the converse of Menon’s
theorem.
Theorem 5.1. Let

∑∞
n=1 an be a convergent series with positive terms. If an > Rn for

all n, every subsum has a unique representation.
Proof. Suppose there is a subsum x that has two different representations

∑∞
n=1 cn an and∑∞

n=1 dn an. Let m be the smallest integer such that cm 6= dm. Without loss of generality,
cm = 0 and dm = 1. Then

0.am +
∞∑

i=m+1
ciai =am +

∞∑
i=m+1

diai.

Hence am ≤
∑∞
i=m+1 ciai ≤

∑∞
i=m+1 ai =Rm, which contradicts the hypothesis that an >

Rn for all n. �

Theorem 5.2. Let
∑∞
n=1 an be a convergent series with positive and non-increasing terms,

and with sum s. If
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(a) a1 ≤ R1 and the subsum x ∈ [0, R1] ∩ [a1, s], or
(b) am ≤ Rm for some m ≥ 2 and the subsum

x ∈
[
m−1∑
i=1

ciai,
m−1∑
i=1

ciai +Rm

]
∩
[
m−1∑
i=1

ciai + am,
m−1∑
i=1

ciai +Rm−1

]
,

then x can be expressed in at least two different ways

Proof. We will prove the more general case (b), and leave (a) as an exercise for the reader.
Suppose that am ≤ Rm for some m ≥ 2 and the subsum

x ∈
[
m−1∑
i=1

ciai,
m−1∑
i=1

ciai +Rm

]
∩
[
m−1∑
i=1

ciai + am,
m−1∑
i=1

ciai +Rm−1

]
.

Since x ∈
[∑m−1

i=1 ciai,
∑m−1
i=1 ciai +Rm

]
,

x ∈
[
m−1∑
i=1

ciai,
m−1∑
i=1

ciai +Rm+1

]
∪
[
m−1∑
i=1

ciai + am+1,
m−1∑
i=1

ciai +Rm

]
.

Let cm = 0, and define cn when n > m as in the proof of Theorem 2.4. (If x <∑m−1
i=1 ciai + am+1, let cm+1 = 0; if x ≥

∑m−1
i=1 ciai + am+1, let cm+1 = 1, and so on).

Note that
m−1∑
i=1

ciai + am ≤ x ≤
m−1∑
i=1

ciai +Rm.

Since the sequence (an) is non-increasing,
m−1∑
i=1

ciai + am+1 ≤
m−1∑
i=1

ciai + am ≤ x.

Therefore,

x ∈
[
m−1∑
i=1

ciai + am+1,
m−1∑
i=1

ciai +Rm

]
,

and hence we let cm+1 = 1. We get a sequence (cn) such that x =
∑∞
i=1 ciai.

But it is also true that x ∈
[∑m−1

i=1 ciai + am,
∑m−1
i=1 ciai +Rm−1

]
, and hence

x ∈
[
m−1∑
i=1

ciai + am,
m−1∑
i=1

ciai + am +Rm+1

]
∪
[
m−1∑
i=1

ciai + am + am+1,
m−1∑
i=1

ciai +Rm−1

]
.

Let cm = 1, and again define cn when n > m as in the proof of Theorem 2.4. We see that

x ≤
m−1∑
i=1

ciai +Rm =
m−1∑
i=1

ciai + am+1 +Rm+1 ≤
m−1∑
i=1

ciai + am +Rm+1.

Hence x ∈
[∑m−1

i=1 ciai + am,
∑m−1
i=1 ciai + am +Rm+1

]
. If x <

∑m−1
i=1 ciai + am + am+1,

let cm+1 = 0; if x ≥
∑m−1
i=1 ciai + am + am+1, let cm+1 = 1. In either case we get a

representation of x with cm = 1, which differs from the representation found earlier in
which cm = 0. Therefore there are at least two different representations for x.

�

Example. Consider the series 3
4 + 1

4 + 3
42 + 1

42 +. . .. With our notation, a2n−1 = 3
4n , a2n =

1
4n , R2n−1 = 7

3

(
1

4n

)
and R2n = 4

3

(
1

4n

)
. Note that a2n−1 > R2n−1 and a2n < R2n for all

n. It is easy to verify that 1
3 =

∑n−1
i=1 a2i +R2n for all n, so 1

3 has infinitely many different
representations as a subsum.
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6. More Results on Subsums
Kakeya’s results tell us the nature of the subsum set when an ≤ Rn for all but finitely

many n, and when an > Rn for all but finitely many n. They do not tell us what happens
if both an ≤ Rn and an > Rn for infinitely many n. According to (A. Bartoszweicz, M.
Filipczak. and E. Szymonik (2014)), Kakeya conjectured that the subsum set was always
either a finite union of closed and bounded intervals or a Cantor set, but this was shown
to be false by (A. Weinstein and B. Shapiro (1980)). Further work by Nyman, Guthrie
and Saenz (J. Guthrie and J. Nyman (1988), J. Nyman and R. Saenz (1997), J. Nyman
and R. Saenz (2000)) established the following result.

Theorem 6.1. Let
∑∞
n=1 an be a convergent series of positive terms and let S be its

subsum set. Then exactly one of the following is true.
(a) S is a finite union of closed and bounded intervals.
(b) S is homeomorphic to the Cantor set.
(c) S is homeomorphic to the subsum set of the series

∑∞
n=1 bn, where b2n−1 = 3

4n and
b2n = 2

4n .

For (c) to occur it is necessary but not sufficient that there be infinitely many n for
which an ≤ Rn, and also infinitely many n for which an > Rn.

Guthrie and Nyman in (J. Guthrie and J. Nyman (1988)) show that the subsum set of
the series

∑∞
n=1 bn described in (c) contains the interval

[
3
4 , 1
]
, and hence has nonempty

interior. It is an example of a type of set called a M-Cantorval. Here is the formal
definition, as found in (A. Bartoszweicz., M. Filipczak and E. Szymonik (2014)).

Definition 6.2. A set S is a M-Cantorval if:
(a) S is a non-empty compact subset of the real line.
(b) S is equal to the closure of its interior.
(c) Both endpoints of any component with nonempty interior are accumulation points

of one-point components of S.

Bartoszweicz, Filipczak and Szymonik describe a family of series whose subsum sets are
Cantorvals. A multigeometric series has the form

k1 + k2 + . . .+ km + k1q + k2q + . . .+ kmq + k1q
2 + k2q

2 + . . .+ kmq
2 + . . . .

Denote it by (k1, k2, . . . , km; q). Here is the result from ((A. Bartoszweicz., M. Filipczak
and E. Szymonik (2014)).

Theorem 6.3. Let k1 ≥ k2 ≥ . . . ≥ km be positive integers, and let K =
∑m
i=1 ki.

Suppose that the set {
∑m
i=1 ciki : ci = 0 or 1} contains the numbers n0, n0 + 1, . . . , n0 + n

for some positive integers n0 and n. Then if 1
n+1 ≤ q < km

K+km
, the subsum set of the

series (k1, k2, . . . , km; q) is a Cantorval.

The paper (J. Ferdinands and T.Ferdinands (2019)) generalizes this result by showing
that the conclusion holds when the set {

∑m
i=1 ciki : ci = 0 or 1} contains the terms of an

arithmetic progression. Nitecki in (Z. Nitecki, (2013)) gives a very nice survey of the topic
of subsums of a series.
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