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Abstract
A comparison of eight different univariate normality tests, including interesting and most
recently developed tests, was carried out using Monte Carlo simulations for distributions
with different skewness and kurtosis under four groups: symmetric long-tailed, symmetric
short-tailed, asymmetric, and normal modified distributions. Several sample sizes were
used. Results suggest what univariate normality tests under consideration are best, based
on the nature of the nonnormality and sample size.
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1. Introduction
Assessing univariate normality is an important task in the analysis of univariate data.

This is due to the fact that most parametric statistical techniques have been developed
based on normality assumption. Thus, testing the normality assumption is an essential
part of the univariate data analysis.

There are two main types of methods that can be used to test normality. One is
to use graphical methods in which the researcher observes graphs and charts such as
histograms, box plots, and Q-Q plots to evaluate the normality assumption. However,
these graphical methods may be appropriate only if the statistical procedure used is robust
to the normality assumption. When the given statistical procedure is not robust, more
rigorous statistical testing methods should be used to evaluate the normality assumption.

In the literature of univariate analysis, there are many different tests devoted to this
problem. Some references are [1], [18], [12], [6], [17], [16] , [11], [5], [20], [15] and many
others.
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There are several studies that have been carried out in the literature addressing the
comparison of these univariate normality tests. [2] compared ten univariate normality
tests that were used from three different categories: empirical distribution function tests,
regression and correlation tests, and omnibus skewness and kurtosis tests. The power
of these tests were computed using Monte Carlo samples of small, moderate, and large
sample sizes from symmetric, skewed, contaminated and mixed distributions. Based on his
simulation results, Seier claimed that the Shapiro-Wilk and the Chen-Shapiro tests have
higher average power, and most crucial and widely known Empirical distribution tests are
Kolmogovov-Smirnov, Anderson-Darling, and Cramer-von Mises tests.

[14] compared the power of four formal tests of normality: Shapiro-Wilk test, Kolmogovov-
Smirnov test, Lilliefors test, and Anderson-Darling test. They generated Monte Carlo sim-
ulations of sample data from alternative distributions that follow symmetric and asym-
metric distributions. They concluded that the Shapiro-Wilk test is the best test to be
adopted for both symmetric non-normal and asymmetric distributions.

[21] compared the power of eight selected normality tests: Shapiro-Wilk test, Kolmogovov-
Smirnov test, Lilliefors test, Cramer-von Mises test, Anderson-Darling test, D’Agostino-
Pearson test, Jarque-Bera test, and chi-squared test. They considered alternative distri-
butions that follow symmetric short-tailed, Symmetric long-tailed, and asymmetric distri-
butions in Monte Carlo Studies. [21] provide a brief description of the eight test statistics
and suggest that the D’Agostino and Shapiro-Wilk tests perform better for symmetric
short-tailed distributions, the Jarque-Bera and D’Agostino tests perform better for sym-
metric long-tailed distributions, and the Shapiro-Wilk test is the most powerful test for
asymmetric distributions.

[13] compared seven normality tests: Kolmogovov-Smirnov, Anderson-Darling, Kuiper,
Jarque-Bera, Cramer-von Mises, Shapiro-Wilk, and Vasicek. They computed empirical
power for each test by Monte Carlo simulation methods under twenty alternatives, which
were divided into four subgroups, depending on the support and shape of their densities.
In their conclusions, out of these seven tests, they recommend to use the Jarque-Bera test
statistic for symmetric distributions and Shapiro-Wilk test for asymmetric distributions,
in practice.

[20] comprehensively discussed and summarized a collection of normality tests, which
were compared based on power and ease of use. In addition, he discussed the performance
of the tests in the presence of outliers as well.

In this study, we used currently-available, including recently developed, eight univari-
ate tests and compared them to investigate what univariate normality tests are the best
depending on the nature of the non-normality and sample size. Monte Carlo simulations
were used to investigate the strengths and weaknesses of the considered test statistics. To
calculate the empirical power of the tests, alternative distributions were used from four dif-
ferent categories: symmetric long-tailed, symmetric short-tailed, asymmetric, and normal
modified distributions. Section 2 briefly discusses each of the eight tests being compared
and Section 3 presents power comparisons of the tests using Monte Carlo simulations for
alternative distributions for several sample sizes. Finally, Section 4 provides conclusions
and recommendations from the investigation.

2. Description of test statistics
We investigate eight normality tests based on univariate skewness which is a measure

of symmetry about the mean for a probability density, and kurtosis which is regarded as
a measure of the peakedness of a probability density for a random variable. Skewness
equal to zero indicates that the probability density is perfectly symmetric about its mean.
Kurtosis is intended to measure the height and sharpness of a dominant central peak,
relative to that of a standard bell-shaped curve. Skewness and Kurtosis of a standard
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Normal distribution are 0 and 3.0 respectively. In this section, we briefly describe the eight
tests under consideration: ZED test, XAD test, Gel-Gastwirth test, Brys-Hubert-Struyf
test, Bonett-Seier test, Doornik-Hansen test, Jaque-Bera test, and D’Agostino-Pearson
test.

2.1. ZED and XAD Tests of Normality
[7] defined the 2nd-power skewness and kurtosis, which are interesting alternatives to

the classical Pearson’s skewness and kurtosis, as follows.
For a sample X1, X2, ..., Xn, ‘2nd-power skewness’ and ‘2nd-power kurtosis’ are denoted

by B2 and K2 and defined as

B2 = 1
n

n∑
i=1

z2
i sign(Zi) (2.1)

K2 = 1
n

n∑
i=1

z2
i log|Zi| (2.2)

where

Zi = S−1
n (Xi − X̄n), Sn =

[ 1
n

n∑
i=1

(Xi − X̄n)2
]1/2

, X̄n = 1
n

n∑
i=1

Xi.

Sample 2nd-power skewness and kurtosis are used to build an univariate test of nor-
mality that can also be derived as Rao’s score test on the asymmetric power distribution,
which combines the large range of exponential tail behavior provided by the exponential
power distribution family with various levels of asymmetry.

The ‘transformed 2nd-power skewness’ is denoted by Z(B2) and defined as

Z(B2) = n1/2B2
[(3 − 8/π)(1 − 1.9/n)]1/2 , (2.3)

where B2 is given in equation (2.1) .
The ‘transformed 2nd-power net kurtosis’ is denoted by Z(K2 − B2

2) and defined as

Z(K2 − B2
2) = n1/2[(K2 − B2

2)1/3 − ((2 − log2 − γ)/2)1/3(1 − 1.026/n)]
[72−1((2 − log2 − γ)/2)−4/3(3π2 − 28)(1 − 2.25/n0.8)]1/2 , (2.4)

where γ = 0.577215665... and B2 and K2 are given in equations (2.1) and (2.2), respec-
tively.

Finally, the ‘transformed 2nd-power kurtosis’ is denoted by Z(K2) and defined as

Z(K2) = n1/2[((2K2)αn − 1)/αn + ((2 − log2 − γ)−0.06 − 1)/0.06 + 1.32/n0.95]
[(2 − log2 − γ)−2.12(3π2 − 28)/2 − 3.78/n0.733]1/2 (2.5)

where K2 is given in equation (2.2), αn = −0.06 + 2.1/nn0.67
.

The two univariate statistics proposed by [7] can be presented as follows.
The first univariate test statistic is denoted by XAD and given by

XAD = Z2(B2) + Z2(K2 − B2
2) (2.6)

where the transformed 2nd-power skewness Z(B2) and the transformed 2nd-power net
kurtosis Z(K2 − B2

2) are given in the equations (2.3) and (2.4), respectively. Furthermore,
under the null hypothesis, XAD has approximately a χ2

2 distribution for all n ≥ 10.
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The second statistic they proposed to test the composite hypothesis of normality, for
finite sample sizes n ≥ 10, is denoted by ZED and given by

ZED = Z(K2) (2.7)

where the transformed 2nd-power kurtosis Z(K2) is given in equation (2.5). Further-
more, under the null hypothesis, ZED is approximately a standard normal distribution for
all n ≥ 10.

2.2. The Gel-Gastwirth Test for Normality
[9] utilized a robust estimate of spread which is less influenced by outliers and proposed

the new Jarque-Bera (RJB) test statistic:

RJB = n

6
(m3

J3
n

)2
+ n

64
(m4

J4
n

− 3
)2

(2.8)

where

Jn =
√

π

2n2

n∑
i=1

|Xi − M |, mj = n−1
n∑

i=1
(Xi − X̄)j and M is the sample median.

2.3. The Brys-Hubert-Struyf Test for Normality
[4] proposed a goodness-of-fit test based on robust measures of skewness and tail weight.

They considered the medcouple (MC), a robust skewness measure, proposed in Brys et
al.[10], [3] and defined as:

MC(F ) = medX(i)≤mF ≤X(j)h(x(i), x(j)) (2.9)

with x(i) and x(j) sampled from F, mF = F −1(0.5), and the kernel function h given by

h(x(i), Xj) =
(x(j) − mF ) − (mF − x(i))

(x(j) − x(i))
.

Furthermore, they considered the left medcouple (LMC) and right medcouple (RMC)
of the left and right tail weight measures and defined as follows:

LMC(F ) = −MC(x < mF )
and

RMC(F ) = MC(x > mF ).
The Brys-Hubert-Struyf test statistic is defined by

TML = n(ω − w)tΣ−1(ω − w) (2.10)

where w = [MC, LMC, RMC]t = [0, 0.199, 0.199]t and

Σ =

 1.2500 0.3230 −0.3230
0.3230 2.6200 −0.0123

−0.3230 −0.0123 2.6200

 .

TML test statistic approximately follows a chi-square distribution with three degrees of
freedom.
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2.4. Bonett-Seier Test for Normality
[2] proposed a modified measure of kurtosis for testing normality assumption. The

Bonett and Seier normality test statistic is defined as:

Tw =
√

n − 2(ω̂ − 3)
3.54 (2.11)

where

ω̂ = 13.29[ln
√

m2 − ln(n−1
n∑

i=1
|Xi − X̄|)]

Tw approximately follows a standard normal distribution.

2.5. Doornik-Hansen Test for Normality
[8] suggested an easy to use version of the omnibus test for normality using skewness

and kurtosis based on [19]. Let Z1 and Z2 denote the transformed skewness and kurtosis.
The test statistic is then defined as

Ep = Z2
1 + Z2

2 (2.12)
where
Z1 = δ1 log{y + (y2 + 1)1/2}, Z2 =

{(
χ
2α

)1/3
− 1 + 1

9α

}
(9α)1/2, δ1 = 1

{log ω}1/2 ,

y =
√

b1
{

ω2−1
2

(n+1)(n+3)
6(n−2)

}1/2
, χ = (b2−1−b1)2k, α = a+b1c, ω2 = −1+{2(β−1)}1/2,

b1 = m3

m
3/2
2

, (2.13)

b2 = m4
m2

2
, (2.14)

a = (n − 2)(n + 5)(n + 7)(n2 + 27n − 70)
6δ2

,

c = (n − 7)(n + 5)(n + 7)(n2 + 2n − 5)
6δ2

,

k = (n + 5)(n + 7)(n3 + 37n2 + 11n − 313)
12δ2

,

β = 3(n2 + 27n − 70)(n + 1)(n + 3)
(n − 2)(n + 5)(n + 7)(n + 9) ,

δ2 = (n − 3)(n + 1)(n2 + 15n − 4),
and

mj = n−1
n∑

i=1
(Xi − X̄)j . (2.15)

This test is approximately chi-squared distributed with two degrees of freedom.
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2.6. Jaque-Bera Test for Normality
[11] proposed a normality test that is simple in computations and is asymptotically

efficient. Jarque-Bera test statistic can be defined as

JB = n

6
(
b1 + (b2 − 3)2

4
)

where b1 and b2 are same as in the equations (2.13) and (2.14), respectively. JB test
statistic asymptotically follows a chi-squared distributed with two degrees of freedom.

2.7. D’Agostino-Pearson Test for Normality
[6] proposed a normality test that is based on skewness and kurtosis. Their proposed

test statistic is given by

OT = TS2 + TK2.

TS and TK are given by

TS = δ ln(Y/α +
{

(Y/α)2 + 1
}1/2

) (2.16)

where

Y =
√

b1

{(n + 1)(n + 3)
6(n − 2)

}1/2
,

α =
{ 2

(W 2 − 1)

}1/2
,

δ = 1√
ln W

,

W 2 = {2(β2 − 1)}1/2 − 1,

β2 = 3(n2 + 27n − 70)(n + 1)(n + 3)
(n − 2)(n + 5)(n + 7)(n + 9) ,

and

TK =
(1 − 2

9A) − [ 1−2/A

1+x
√

2/(A−4)
]1/3√

2/(9A)
where

x = b2 − 3(n − 1)/(n + 1)
24n(n − 2)(n − 3)/[(n + 1)2(n + 3)(n + 5)] ,

A = 6 + 8√
β1

[√
1 + 4√

β1
+ 2√

β1

]
,

and √
β1 = 6(n2 − 5n + 2)

(n + 7)(n + 9)

√
6(n + 3)(n + 5)
n(n − 2)(n − 3) .

OT statistic has approximately a chi-squared distribution with two degree of freedom.
Please note that b1 and b2 are same as in the equations (2.13) and (2.14), respectively.
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3. Simulation Study
In this paper eight different tests of univariate normality were comprehensively com-

pared for accuracy, upper percentiles, type I error, and power. The tests compared were
ZED, XAD, Gel-Gastwirth, Brys-Hubert-Struyf, Bonett-Seier, Doornik-Hansen, Jaque-
Bera, and D’Agostino-Pearson test. Each test was compared under various alternatives:
four groups of distributions (symmetric long-tailed, symmetric short-tailed, asymmetric,
normal modified distributions), different significance levels (α = 0.05, 0.10), and different
sample sizes (n = 10, 15, 20, 30, 50, 75, 100, 200, 300, 500) using Monte Carlo simulations
with 10, 000 samples from each sample size.

3.1. Upper Percentiles

2*n Test Statistics
XAD ZED RJB TML Tw Ep JB OT

10 4.841 (6.214) 1.302 (1.705) 3.320 (7.008) 3.347 (4.200) 0.977 (1.462) 4.715 (6.007) 1.660 (2.642) 4.507 (6.729)
20 4.562 (5.939) 1.255 (1.604) 3.672 (6.991) 4.112 (5.120) 1.100 (1.558) 4.452 (5.835) 2.328 (3.728) 4.442 (6.237)
30 4.543 (5.924) 1.250 (1.628) 3.953 (7.262) 5.624 (7.007) 1.131 (1.591) 4.401 (5.848) 2.813 (4.286) 4.581 (6.205)
50 4.545 (5.921) 1.248 (1.612) 3.938 (6.781) 5.863 (7.477) 1.169 (1.569) 4.417 (5.858) 3.134 (4.857) 4.491 (6.219)
75 4.575 (5.921) 1.256 (1.598) 3.921 (6.467) 5.775 (7.180) 1.190 (1.611) 4.377 (5.803) 3.461 (5.193) 4.567 (6.163)
100 4.524 (5.985) 1.251 (1.637) 4.043 (6.398) 5.875 (7.384) 1.201 (1.618) 4.383 (5.967) 3.672 (5.385) 4.641 (6.106)
200 4.553 (5.934) 1.271 (1.617) 4.010 (5.831) 6.063 (7.549) 1.221 (1.624) 4.346 (5.744) 3.950 (5.455) 4.508 (5.994)
300 4.568 (5.930) 1.288 (1.628) 4.056 (5.761) 6.066 (7.540) 1.242 (1.620) 5.710 (4.442) 4.093 (5.464) 4.533 (5.962)
500 4.582 (5.884) 1.275 (1.639) 4.186 (5.624) 6.165 (7.694) 1.246 (1.595) 4.423 (5.818) 4.220 (5.573) 4.494 (5.7880

4.605(5.991) 1.281(1.644 ) 4.605(5.991) 6.251(7.814) 1.281(1.644) 4.605(5.991) 4.605(5.991) 4.605(5.9915)

Table 1. Upper 5(10) Percentiles

The values of upper 5 and 10 percentiles of the test statistics under consideration are
given in Table 1. The lowest row of each table shows theoretical (asymptotic) values for
the corresponding distribution of test statistics. When sample size increases, values of
all statistics seem to converge to their asymptotic distribution values. The statistics XAD

and ZED start to converge to their asymptotic distribution values faster than others, when
the sample size is about 20. Statistic OT starts to converge when the sample size is about
75. When the sample size is small (n=10, 20, 30), JB values are smaller compared to
its asymptotic distribution values. Overall, it seems, XAD has the best accuracy for each
sample size and ZED has the second best.

In addition, for both upper 10 and 5 percentiles, OT has a better accuracy than Tw.
The statistic Tw is closer to its asymptotic distribution values than TML, TML has a better
accuracy than EP , Ep has a better accuracy than RJB, and RJB has a better accuracy
than JB.
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3.2. Type I Errors

2*n Test Statistics
XAD ZED RJB TML Tw Ep JB OT

10 0.050 (0.100) 0.051 (0.100) 0.050 (0.101) 0.050 (0.100) 0.051 (0.101) 0.051 (0.100) 0.051 (0.102) 0.051 (0.100)
15 0.050 (0.099) 0.051 (0.099) 0.050 (0.099) 0.051 (0.101) 0.049 (0.099) 0.051 (0.100) 0.050 (0.101) 0.050 (0.100)
20 0.051 (0.101) 0.050 (0.099) 0.051 (0.100) 0.050 (0.099) 0.050 (0.100) 0.050 (0.101) 0.050 (0.099) 0.050 (0.099)
30 0.049 (0.100) 0.049 (0.099) 0.050 (0.099) 0.050 (0.098) 0.051 (0.099) 0.049 (0.101) 0.050 (0.100) 0.050 (0.099)
50 0.048 (0.098) 0.049 (0.099) 0.049 (0.097) 0.049 (0.097) 0.049 (0.100) 0.049 (0.098) 0.048 (0.097) 0.047 (0.097)
75 0.049 (0.098) 0.048 (0.096) 0.048 (0.098) 0.052 (0.102) 0.048 (0.098) 0.050 (0.099) 0.049 (0.099) 0.048 (0.099)
100 0.050 (0.099) 0.049 (0.097) 0.048 (0.098) 0.051 (0.102) 0.049 (0.099) 0.050 (0.099) 0.049 (0.099) 0.049 (0.099)
200 0.049 (0.099) 0.049 (0.098) 0.048 (0.100) 0.049 (0.100) 0.049 (0.097) 0.050 (0.099) 0.048 (0.099) 0.049 (0.098)
300 0.051 (0.097) 0.049 (0.097) 0.049 (0.097) 0.049 (0.098) 0.048 (0.098) 0.049 (0.098) 0.049 (0.099) 0.050 (0.099)
500 0.049 (0.099) 0.050 (0.099) 0.049 (0.097) 0.052 (0.100) 0.049 (0.098) 0.049 (0.097) 0.050 (0.097) 0.050 (0.098)

Table 2. Type I Errors at 0.05(0.10)

Table 2 gives the values for type I errors of the test statistics. There is not much
difference in Type I errors. All considered statistics have Type I error values very close to
the expected 0.05 and 0.10 significance levels for all considered sample sizes.

3.3. Power Comparison
In this section we present results of power comparisons of univariate normality tests un-

der consideration and analyze results to see which univariate normality tests are the best.
We have considered eight univariate normality tests, namely, ZED, XAD, Gel-Gastwirth,
Brys-Hubert-Struyf, Bonett-Seier, Doornik-Hansen, Jaque-Bera, and D’Agostino-Pearson
under different alternatives. Four different distribution groups were used with different
skewness and kurtosis, namely, symmetric long-tailed, symmetric short-tailed, asymmetric,
and normal modified distributions. Each group was tested using Monte Carlo simulations
for different sample sizes 10, 15, 20, 30, 50, 75, 100, 200, 300, and 500 taking 10, 000 samples
from each sample size. The significance level used was 0.05.

The Tables 3-11 present simulation results of the considered test statistics of respective
normality tests for the four groups for above-mentioned sample sizes with 0.05 significance
level. Tables 3 and 4 present results for symmetric long-tailed distributions. Tables 6 and
7 present for symmetric short-tailed, Tables 7-9 present for asymmetric, and Tables 10
and 11 present for normal modified distributions, respectively. Tables 12-15 present the
average values for all distributions in the four groups symmetric long-tailed, symmetric
short-tailed, asymmetric, and normal modified distributions under consideration based on
sample sizes.

Twelve cases of mixture of normal distributions were considered. These mixture dis-
tributions, denoted by MixN(p; a; b), consisting of randomly selected observations with
probability 1−p drawn from a standard normal distribution and with probability p drawn
from a normal distribution with mean a and standard deviation b. Next, we consider
five cases of standard normal distributions with outliers and denoted by Nout(a = 1)
to Nout(a = 5). This set of distributions was specifically considered in order to identify
which normality tests are less sensitive to outlier observations that may be present in an
underlying normal data sample. Finally, four cases of the standard normal distribution
truncated at a and b Trunc(a; b), where a and b are the lower and upper truncations
points, respectively, were considered.

From Tables 3 and 4 for symmetric long-tailed distributions it is evident that the Gel-
Gastwirth test (RJB statistic) is the best showing maximal power for almost all sample
sizes considered. Table 12 that presents average power values based on sample sizes, as
expected, ranks Gel-Gastwirth test as the best test too. The second and third best tests,
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considering the average of the power for all sample sizes for these symmetric long-tailed
distributions, are Doornik-Hansen (Ep) and Jaque-Bera (JB) respectively. However, there
is not much difference in power between these three tests. But, if we consider the power
of Brys-Hubert-Struyf Test (TML Statistic), the power is substantially low.

From Tables 5, 6 and 13, for symmetric short-tailed distributions, it is evident that the
test ZED is the best with maximal average power. The second and third best tests are
XAD and Bonett-Seier (Tw Statistic) tests.

From Tables 9-11 and 14, for asymmetric distributions, the order of the best three
tests with highest average power are Doornik-Hansen (Ep), XAD, and Jaque-Bera (JB),
respectively. There is not much difference in power among these tests. In addition, the
D’Agostino-Pearson (OT ) and the Gel-Gastwirth (RJB) tests do not have much of an
average power difference with these three best tests for asymmetric distributions. However,
Bonett-Seier (Tw) test has a considerably lower power on average based on considered
sample sizes for asymmetric distributions.

For the normal modified distributions, Tables 10-11 and 15 suggest that Doornik-Hansen
(Ep), XAD, Jaque-Bera (JB), D’Agostino-Pearson (OT ), and Gel-Gastwirth (RJB) are the
best, in order (Ep being the best), with not much of a difference in average power among
them. The ZED, Bonett-Seier (Tw), and Brys-Hubert-Struyf (TML) tests seem to have a
comparatively lower average power for normal modified distributions.

Thus, the results suggest that the tests, Gel-Gastwirth (RJB) for symmetric long-tailed,
ZED for symmetric short-tailed, and Doornik-Hansen (Ep) for both asymmetric and nor-
mal modified distributions, respectively, are the best in terms of power and work well.

Analyzing all the simulation results for all different sample sizes, the univariate normal-
ity test Doornik-Hansen (Ep) can be recommended as the best to test univariate normality
when the nonnormality of the distribution is unknown. In addition, values suggest that
power increases when sample size increases.

2*n Test Statistics
XAD ZED RJB TML Tw Ep JB OT

10 21.105 18.744 23.325 6.140 17.566 22.185 22.065 22.010
15 28.544 26.388 30.735 6.994 25.233 29.454 28.790 28.301
20 33.898 31.742 36.065 7.522 30.745 34.322 34.151 33.106
30 40.780 39.041 43.110 7.995 38.066 41.348 41.176 39.378
50 48.644 47.688 51.054 10.785 46.632 49.131 49.077 46.410
75 54.526 54.154 57.027 14.898 52.376 55.307 55.285 52.145
100 58.685 58.509 61.441 18.302 56.590 59.467 59.738 56.475
200 67.278 67.541 70.013 26.130 65.094 68.678 69.123 66.136
300 71.558 72.268 74.398 30.998 69.311 73.240 73.776 71.143
500 76.833 78.039 79.486 37.295 74.938 78.616 79.005 76.923

ADB 2.48 3.25 0.00 35.95 5.01 1.49 1.44 3.46
Rank 4 5 1 8 7 2 3 6

Table 3. Average Power of Long-tailed Distributions
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2*n Test Statistics
XAD ZED RJB TML Tw Ep JB OT

10 14.647 13.344 4.149 15.470 12.408 13.068 4.217 6.418
15 19.156 19.962 3.716 16.943 18.013 16.501 3.683 12.489
20 23.415 25.977 3.693 19.435 23.446 19.325 3.662 19.205
30 30.723 35.707 4.228 20.410 32.045 25.335 5.118 31.277
50 42.466 48.538 5.311 23.553 43.262 36.393 17.685 46.218
75 52.090 57.217 8.154 27.299 52.027 48.310 31.642 49.944
100 57.757 62.266 22.891 29.939 57.878 55.062 46.547 51.959
200 69.786 73.785 58.998 37.402 69.589 67.860 64.611 58.180
300 76.874 80.327 69.496 43.055 76.282 75.605 73.827 61.303
500 84.386 87.105 80.642 49.775 83.984 83.878 82.985 67.555

ADB 3.50 0.21 24.50 22.30 3.74 6.50 17.23 10.18
Rank 2 1 8 7 3 4 6 5

Table 4. Average Power of Short-tailed Distributions

2*n Test Statistics
XAD ZED RJB TML Tw Ep JB OT

10 19.334 11.816 17.706 12.837 9.166 19.477 19.318 18.062
15 28.749 15.391 24.621 14.965 11.615 28.889 26.901 25.249
20 36.270 18.427 30.234 20.909 13.909 36.121 32.930 30.984
30 45.447 23.442 38.319 24.040 17.784 45.766 41.849 39.673
50 55.595 30.526 49.061 32.875 23.486 56.326 52.441 50.386
75 63.683 36.331 57.264 40.489 28.178 65.002 60.641 58.924
100 69.381 40.685 63.541 44.649 32.124 70.751 66.918 65.359
200 81.051 50.196 79.726 52.745 41.903 81.721 80.606 79.659
300 85.998 56.166 85.449 58.160 47.744 86.118 85.451 84.904
500 91.432 63.847 90.634 65.797 55.140 91.811 90.919 90.994

ADB 0.51 23.53 4.55 21.46 30.10 0.01 2.41 3.79
Rank 2 7 5 6 8 1 3 4

Table 5. Average Power of Asymmetric Distributions

2*n Test Statistics
XAD ZED RJB TML Tw Ep JB OT

10 16.324 12.739 16.534 7.336 11.634 16.900 15.844 15.235
15 23.881 17.891 22.956 8.806 17.067 23.599 21.631 20.793
20 31.106 22.937 28.223 10.771 21.480 30.054 26.199 24.914
30 40.527 28.648 34.853 11.971 26.365 39.964 33.742 30.851
50 51.759 32.989 42.165 17.811 30.023 51.349 44.219 40.789
75 59.195 34.518 48.483 25.366 30.985 59.172 52.793 50.538
100 63.214 35.273 54.113 30.549 31.689 63.224 58.537 57.690
200 69.034 36.998 65.182 42.759 33.422 69.836 67.417 69.024
300 71.307 38.883 68.869 49.060 35.235 73.552 71.560 73.327
500 74.132 42.595 74.094 55.161 39.273 78.245 76.983 77.614

ADB 0.77 20.47 5.27 24.86 23.10 0.23 3.93 4.74
Rank 2 6 5 8 7 1 3 4

Table 6. Average Power of Normal Modified Distributions

4. Concluding Remarks
Analysis of the comparison results suggest that XAD has the best accuracy and type I

error out of all eight tests considered. The power comparison suggests the most powerful
test varies with the different groups of distributions based on the skewness and kurtosis
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of the distribution and also on the sample sizes. For all sample sizes considered, based
on the averages, for the symmetric long-tailed distributions, the order of the best three
tests is the Gel-Gastwirth test (RJB), Doornik-Hansen test (Ep), and Jaque-Bera test
(JB). For the symmetric short-tailed distributions the order of best three is ZED, XAD,
and Bonett-Seier (Tw). For the asymmetric distributions and for the group with nor-
mal modified distributions, the best three, in order, are Doornik-Hansen (Ep), XAD, and
Jaque-Bera (JB). Therefore, the general recommendation from the study, according to the
nature of nonnormality, the most powerful tests are Gel-Gastwirth test (RJB) for symmet-
ric long-tailed, ZED for symmetric short-tailed, and Doornik-Hansen (Ep) for asymmetric
and normal modified distributions. Based on the comparison results out of all eight tests
compared here, to assess the validity of univariate normality, overall, for all four groups
of different distributions (when the nonnormality is unknown), Doornik-Hansen (Ep) test
seems to be the best fit on average for all sample sizes. However, with the high impor-
tance of normality, as more and more new normality tests are being developed, it is of
considerable importance to continue to compare these new normality tests with the tests
we compared here, in the future as well.
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