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Abstract
We present an elementary proof of the uniqueness of algebraic solutions for each dissection
of a rectangle into squares. The known proof converts the problem into an electrical
network problem and uses Kirchhoff’s Laws. We simply use linear algebra.
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1. Introduction
A squared rectangle (or square) is a tiling of a rectangle (or square) by smaller squares.

People are mostly interested in the search for squared squares that are perfect meaning all
square tiles are of different sizes. [2–6,8].

Suppose we want to find a squared rectangle of 8 squares. The size or the aspect ratio
of the rectangle is not specified. The ratio will be determined by the way the rectangle
is dissected. One technique to find such tiling is to sketch a dissection and to solve
horizontal and vertical compatibility equations that equate different ways of computing
the lengths of common sides. As an example, we draw a dissection of a rectangle into
rectangles, which are presumed to be squares, as in Figure 1 . Then assign a few variables
for the lengths of squares and find the lengths of other squares in terms of those variables.
Comparing total horizontal and total vertical lengths, we get 5x + 2y = x + 3y + z and
4x + 4y − z = 3x + 2y + z. Solving them gives smallest integer solutions shown on the
right in Figure 1. The solutions could be multiplied by a scaling factor to make a bigger
or smaller rectangle.

A natural question to ask is whether the system of horizontal and vertical compatibility
linear equations would suffice to produce a unique solution (up to a scaling factor). In
fact, it is a theorem by Brooks, Smith, Stone, and Tutte [2] that they always give a unique
solution algebraically.
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Figure 1. Finding a Squared Rectangle from a Dissection
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Theorem 1.1 (Brooks, Smith, Stone, and Tutte [2]). Any geometrically feasible dissection
of a rectangle is completely determined up to a scaling factor by its vertical and horizontal
compatibility equations.

We remark that the requirement of a geometrically feasible dissection stems from the
fact that the equations for some dissections, for example,

produce a negative solution, which implies that tiling by squares in such an arrangement
is not possible.

The proof of the theorem depends on electrical network theory. The tiling is viewed as
square plates of metal connected on edges with electricity flowing from top to bottom. The
electrical flow in each square is proportional to the length of the square. And Kirchhoff’s
theorem, a theorem in graph theory, under the assumption of the law of conservation of
current, which are realized by the compatibility equations, implies the flow in each square
is uniquely determined.

In this paper we present an alternative proof of the theorem using elementary linear
algebra rather than graph theory. Specifically, we prove that a particular collection of ver-
tical and horizontal compatibility equations that are chosen systematically have a unique
solution. The number of equations we choose will be the same as the number of squares.

2. Choosing Equations
We may assume the base of the rectangle is 1 and prove the uniqueness strictly without

regarding scaling factors. Let n be the number of squares tiling the rectangle and for
1 ≤ j ≤ n, let sj be the j-th square tile and fj its length. Make levels (horizontal strips)
as in Figure 2 separated by horizontal edges of the tiles. The levels are ordered from top
to bottom from level 1 to level m. We say a square sj overlaps level i if the interior of sj

intersects level i. For example, s3 overlaps levels 1 and 2 in Figure 2.
We make one equation for each level taking the total sum of the lengths of squares

overlapping the level. We call these equations the horizontal equations. For example, in
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Figure 2. A Dissection Example of a Rectangle

s10

s1

s3

s5

s2
s4

s6 s7
s8 s9

Level 1
Level 2
Level 3
Level 4

Level 5

Figure 2, the horizontal equations are as follows.
f1 + f2 + f3 = 1 (Level 1)
f1 + f4 + f3 = 1 (Level 2)

f1 + f6 + f7 + f5 = 1 (Level 3)
f1 + f8 + f9 + f5 = 1 (Level 4)

f10 + f5 = 1 (Level 5)

(2.1)

For the vertical compatibility equations, first we categorize the squares into groups. For
each 1 ≤ k ≤ m, let Gk be the set of squares overlapping level k but not overlapping levels
less than k. In other words, it is the set of squares whose upper edges are aligned with
the upper boundary of level k. We call Gk the k-th group. We may assume the squares
are sequenced in such a way that they are numbered in consecutive order along with the
groups. For example, in Figure 2,

G1 = {s1, s2, s3}, G2 = {s4}, G3 = {s5, s6, s7}, G4 = {s8, s9}, G5 = {s10}.

If two squares belong to the same group, then the vertical distances from the upper edges
of the squares to the bottom side of the whole rectangle must be equal. To measure
those distances, we follow the largest squares of the groups downward to the bottom. For
example, in Figure 2, the distance from s3 to the bottom could be expressed in many ways,
but we pick f3 +f5 rather than f3 +f7 +f8 +f10 or any other expressions. Comparing the
vertical distances for s1, s2, and s3 in G1, we get two equations f1 + f10 = f2 + f4 + f5 =
f3 + f5. Likewise, for each group Gk, we get |Gk| − 1 equations. We call them the vertical
equations.

f1 + f10 = f2 + f4 + f5 = f3 + f5 (Group 1)
f5 = f6 + f8 + f10 = f7 + f8 + f10 (Group 3)

f8 + f10 = f9 + f10 (Group 4)

The number of horizontal and vertical equations together is exactly the total number of
squares. We will prove that the system of linear equations obtained in this way always
has a unique solution.

3. Proving Uniqueness of Solutions
In each group, we pick a largest square. If there are multiple squares of the same size,

we pick one of them once and for all. When we refer to the largest square of a group, we
mean the chosen one in the group. Figure 2 will be used throughout this section as an
example. In this example, we will choose s1, s4, s5, s8, and s10 for the largest squares. Let
xk be the length of the largest square in Gk. In the example,

x1 = f1, x2 = f4, x3 = f5, x4 = f8, x5 = f10.
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We reserve the use of the index i for levels, j for squares, and k for groups. The following
lemma implies the lengths of the largest squares completely determine the lengths of all
squares.

Lemma 3.1. Each fj can be expressed as a linear combination of xk, 1 ≤ k ≤ m, by
solving the vertical equations.

Proof. The vertical equations have been constructed specifically for this purpose. The
rigorous construction of the vertical equations and the proof of the lemma follows.

First we define a chain Cj of each square sj , 1 ≤ j ≤ n, recursively from the bottom
to top as a set of squares to be used in the distance formula. If sj ∈ Gm, that is, if the
square is at the bottom of the rectangle, define Cj = {sj}. Otherwise, the lower edge of
sj is aligned with the upper edge of one of the largest squares, say in group Gk. Define
Cj = {sj} ∪ Cj′ where Cj′ is the chain of the largest square of the group Gk. In other
words, to make each chain, after the beginning square we move down following the largest
squares recursively to reach the bottom. Each chain consists of the largest squares of some
groups in addition to the beginning square sj , which may or may not be a largest square.

For example, the following are the chains for Figure 2 where the largest squares are
underlined.

Group 1: C1 = {s1, s10}, C2 = {s2, s4, s5}, C3 = {s3, s5}
Group 2: C4 = {s4, s5}
Group 3: C5 = {s5}, C6 = {s6, s8, s10}, C7 = {s7, s8, s10}
Group 4: C8 = {s8, s10}, C9 = {s9, s10}
Group 5: C10 = {s10}

The sum of the lengths of all squares in each chain Cj is the vertical distance dj from
the upper edge of the square sj to the bottom of the whole rectangle.

dj =
∑

sp∈Cj

fp.

For the chains in the same group, the vertical distances are equal to each other. Let sj′

be the largest square in a group. For any other square sj in the same group,

dj =
∑

sp∈Cj

fp =
∑

sq∈Cj′

fq = dj′ . (3.1)

For example, in Group 1 above, we have the following equations comparing d2 and d3 to
d1.

f2 + f4 + f5 = f1 + f10, f3 + f5 = f1 + f10.

Expressing these equations in terms of xk’s, we obtain

f2 + x1 + x3 = x1 + x5, f3 + x3 = x1 + x5.

This can be done in general since Cj consists of the largest squares except for one, that
is, sj , and Cj′ consists of the largest squares only. We arrive at equations of the form

fj +
∑

xu =
∑

xv (3.2)

where the sums are over the groups which the largest squares in the chains belong to.
Moving

∑
xu to the other side, we express fj as a linear combination of xk’s. �

Let F = (f1 f2 · · · fn)> and X = (x1 x2 · · · xm)>. Then

F = BX (3.3)
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where B is the coefficient matrix from Lemma 3.1, which is an n×m matrix. Note that
B is a matrix of 0, 1, and −1’s. For example, Figure 2 gives the following equations and
matrices.

Group 1: f1 = x1

f2 = x1 − x2 − x3 + x5

f3 = x1 − x3 + x5
Group 2: f4 = x2
Group 3: f5 = x3

f6 = x3 − x4 − x5

f7 = x3 − x4 − x5
Group 4: f8 = x4

f9 = x4
Group 5: f10 = x5

F =



f1
f2
f3
f4
f5
f6
f7
f8
f9
f10


=



1 0 0 0 0
1 −1 −1 0 1
1 0 −1 0 1
0 1 0 0 0
0 0 1 0 0
0 0 1 −1 −1
0 0 1 −1 −1
0 0 0 1 0
0 0 0 1 0
0 0 0 0 1




x1
x2
x3
x4
x5

 = BX

The first part of the next lemma is obvious.

Lemma 3.2. Each entry of B is one of the following values.
Bjk = 1 if xk belongs to only the right side of Equation (3.2).
Bjk = −1 if xk belongs to only the left side of Equation (3.2).
Bjk = 0 if xk belongs to both sides or neither side of Equation (3.2).

The matrix B is group-wise upper triangular, that is, Bjk = 0 if sj belongs to a group > k.
If sj belongs to group k, then Bjk = 1.

Proof. If sj belongs to a group > k, the sums in Equation (3.2) do not involve xk as the
chains are constructed toward the bottom of the rectangle. Next, if sj belongs to group k,
then either sj is the largest square, in which case, fj = xk, or the right side of Equation
(3.2) begins with xk and the left side has fj and xu with u > k. �

Next we compose the horizontal equations with the vertical equations. There is one
horizontal equation for each level where the sum of the lengths of all squares overlapping
the level equals 1. So the number of horizontal equations is m. Let E be the m × n
coefficient matrix for those equations so that

EF = 1 (3.4)
where 1 = (1 1 · · · 1)>. For example, Equations (2.1) give the following matrix.

E =


1 1 1 0 0 0 0 0 0 0
1 0 1 1 0 0 0 0 0 0
1 0 0 0 1 1 1 0 0 0
1 0 0 0 1 0 0 1 1 0
0 0 0 0 1 0 0 0 0 1

 (3.5)
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The matrix E tells which squares overlap which levels.
Define H = EB. Then H is an m×m square matrix. Combining equations (3.3) and

(3.4),
HX = 1 (3.6)

This is a system of linear equations for the largest squares. We will show that H is a
nondegenerate square matrix, proving that X is uniquely determined. Then Equation
(3.3) will determine F , or the lengths fj of all squares.

To that end, we define a new square matrix A as a submatrix of E consisting of the
columns corresponding to the largest squares. For example, the matrix E in Equation
(3.5) gives the following A. It consists of columns 1, 4, 5, 8 and 10.

A =


1 0 0 0 0
1 1 0 0 0
1 0 1 0 0
1 0 1 1 0
0 0 1 0 1


By definition, the entries in A are characterized as follows.

Lemma 3.3. Each entry of the matrix A is either 0 or 1.{
Aik = 1 if the largest square in group k overlaps level i
Aik = 0 if the largest square in group k does not overlap level i

Consequently, A is lower triangular and its diagonal entries are 1.

In Proposition 3.5, we will prove that the horizontal coefficient matrix E and the ver-
tical coefficient matrix B are closely related, that is, E = AB>. We note the following
properties resulting from Lemmas 3.2 and 3.3 to analyze the entries of AB>.

Lemma 3.4. Three possible values of AikBjk are 1, −1, and 0.
• AikBjk = 1 if Aik = 1 and Bjk = 1, in which case, the largest square in group k
overlaps level i and xk appears on the right side only of Equation (3.2).
• AikBjk = −1 if Aik = 1 and Bjk = −1, in which case, the largest square in group

k overlaps level i and xk appears on the left side only of Equation (3.2).
• AikBjk = 0 if Aik = 0 or Bjk = 0, in which case, either the largest square in group

k does not overlap level i, or xk appears on both or neither sides of Equation (3.2).

The next proposition is the key observation leading to the proof of the theorem.

Proposition 3.5. With the definitions above, E = AB>.

Proof. We compare each entry Eij with (AB>)ij =
∑m

k=1 AikBjk. By Lemma 3.3, A is
lower triangular, that is, Aik = 0 for k > i, thus

m∑
k=1

AikBjk =
i∑

k=1
AikBjk.

There are three possible positions of the square sj relative to level i. The first case is
when sj does not overlap level i but overlaps some levels > i. The second is when sj does
not overlap level i but overlaps some levels < i. In those cases, Eij = 0. The last case is
when sj overlaps level i and Eij = 1. In Figure 2, relative to level 3, s8, s9, s10 are of the
first case, s2, s3, s4 of the second, and s1, s5, s6, s7 of the third case.

In the first case sj belongs to a group > i. Thus, Bjk = 0 for k ≤ i by Lemma 3.2.
Therefore,

∑i
k=1 AikBjk = 0 = Eij .

In the second case, we prove the terms in
∑i

k=1 AikBjk are either all zeros or all zeros
but two, which are 1 and −1. Because sj is positioned above level i geometrically, the
chain Cj in Equation (3.1) should contain exactly one square overlapping level i, and so
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does Cj′ . And those squares overlapping the level give one term each on each side of
Equation (3.2). Because sj does not overlap level i, those terms cannot be fj but they are
x’s. Let xu (on the left) and xv (on the right) be those terms. By Lemma 3.4, AikBjk is
possibly nonzero only for k = u and k = v.

i∑
k=1

AikBjk =
∑

k∈{u,v}
AikBjk.

In the case u = v, AiuBju = AivBjv = 0 because Bju = Bjv = 0 by canceling of terms
xu = xv in Equation (3.2). In the other case where u 6= v, AiuBju = −1 and AivBjv = 1.

In the third case, Eij = 1 and we prove the terms in
∑i

k=1 AikBjk are all zeros but one
term, which is 1. This case is similar to the second case except that in Equation (3.2) the
terms corresponding to the squares overlapping level i are fj on the left and xv for some
v on the right. Therefore,

∑i
k=1 AikBjk = AivBjv = 1 by Lemma 3.4. �

The next proposition completes the proof of the uniqueness theorem.

Proposition 3.6. The equation HX = 1 has a unique solution.

Proof. Since H = EB = AB>B by Proposition 3.5 and det A = 1 by Lemma 3.3, it is
enough to prove B>B is nondegenerate. The quadratic form associated with the symmetric
matrix B>B is

X>(B>B)X = (BX)>(BX) =
n∑

j=1
(BjX)2

where Bj is the j-th row of matrix B. By equations (3.3), the last sum equals
∑n

j=1 f2
j ,

which expresses the area of the whole rectangle by definition of fj . Therefore, the quadratic
form is positive definite. �

We presented a proof by elementary means of the uniqueness of the solution of a dis-
section of a rectangle by squares. The matrix E, which describes the configuration of
the dissection, determines other matrices A (by definition), B (by Proposition 3.5), and
H = EB. If one wants to enumerate all possible dissections with a specified number of
squares, one way would be to enumerate all possible matrices E.
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