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The question of for which connected, finite simple graphs the collection of longest paths in
the graph has a system of distinct vertex representatives is considered. Similar consideration is
given to the same question for cycles.

Introduction

Steve Hedetniemi, in casual conversation, created an en-
tire menagerie of sometimes, but not always, interesting
questions in graph theory.

His first question: for which simple graphs does the family
of open neighborhoods have a “system of distinct representa-
tives”? Such a “system” for a graph G would be a one-to-one
function

φ : V(G)→ V(G)

such that for each v ∈ V(G),

φ(v) ∈ NG(v) = {u ∈ V(G)|uv ∈ E(G)}.

[For notation, see West (2001) or any graph theory textbook].
In this case, the “family of open neighborhoods” is an in-

dexed collection, {NG(v)|v ∈ V(G)}: as in P. Hall’s (1935)
original formulation, the sets of which we want a system of
distinct representatives are not necessarily distinct sets.

The original question had a reasonably interesting answer
(Hedetniemi, Holliday, & Johnson, 2018): there is such a
system of distinct representatives of the open neighborhoods
if and only if the graph has a spanning subgraph every com-
ponent of which is either an edge or a cycle. Notice that if
we replace “open” by “closed” in the original question, the
answer is trivial: every graph has such a system of distinct
representatives. Each vertex can be taken as the representa-
tive of its own closed neighborhood.

Hedetniemi went on to propose replacing the indexed fam-
ily of open neighborhoods in a graph, in his original question,
by other collections of structures in the graph. For instance,
one can ask, for which graphs does the collection of maxi-
mum matchings in the graph have a system of distinct edge
representatives?

It may well be that no concise answer to such a question is
possible– it may be that the distinct-representatives-of-open-
neighborhoods problem is anomalous among such problems.
Nonetheless, useful discoveries may result from the inquiry.
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In this paper, we are interested in distinct vertex represen-
tatives of the longest paths in connected graphs. Later, we
extend this consideration to cycles.

Denote the path on n vertices by Pn, and denote the cycle
on n vertices by Cn. For other graph theory definitions and
notations, we refer the reader to West (2001).

A maximum path in a graph G is a subgraph isomorphic
to Pn for some n such that no subgraph of G is isomorphic
to Pk for any k > n. Maximum cycles are defined similarly.
In what follows, all graphs are finite, connected, and simple
– no loops nor multiple edges are allowed. The order of a
graph G is |V(G)|, the number of vertices in G.

In the following section we show that an obvious neces-
sary condition for the existence of a system of distinct vertex
representatives of the family of longest paths in a graph —
that the number of longest paths is no greater than the num-
ber of vertices in the union of those paths — is not sufficient.
Then we derive from Hall’s (1935) marriage theorem a suffi-
cient condition for the existence of a system of distinct vertex
representatives of the longest paths in a graph. We end the
section with three examples, the second of which shows that
the sufficient condition derived from Hall’s theorem is not
necessary.

We then note analogs for maximum cycles of the results
for the longest paths, and pose a problem.

SDR-P-good

For a graph G, denote the set of maximum paths of G by
P(G). Denote by V∗(P(G)) the union of the vertex sets of
the maximum paths of G; in other words, V∗(P(G)) is the
set of all vertices that have the good fortune of lying on a
maximum path in G. G is SDR-P-good if P(G) has a system
of distinct vertex representatives (SDR). An SDR for P(G) is
a 1-1 function

Φ : P(G)→ V(G)

such that
Φ(p) ∈ V(p),∀p ∈ P(G).

Note that such a function maps P(G) into V∗(P(G)).
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Proposition 1. If G is SDR-P-good, then

|P(G)| ≤ |V∗(P(G))|.

We prove the contrapositive of the statement.

Proof. From the definition, any SDR is a 1-1 function from
P(G) into V∗(P(G)), and clearly no such function from P(G)
could be 1-1 if |P(G)| > |V∗(P(G))|. �

The immediate question is if |P(G)| ≤ |V∗(P(G))| is suffi-
cient for G to be SDR-P-good.

Proposition 2. |P(G)| ≤ |V∗(P(G))| is not sufficient for G to
be SDR-P-good.

Proof. Consider the example provided in Figure 1. The
longest paths in the graph shown are P13’s. There are
2 · 15 + 2 = 32 such paths , i.e., |P(G)| = 32, while
|V(G)| = |V∗(P(G))| = 33. The “dangling” P5 is a subpath
of only two maximum paths. Therefore only two of those
5 vertices can serve in a collection of representatives of the
maximum paths in this graph. Consequently, the number of
vertices in a set of distinct representatives of a maximal sub-
collection of P(G) is no greater than 15+11+2+2 = 30 < 32.
Thus there is no system of distinct vertex representatives of
the paths in P(G), for this graph G. �

Figure 1. Counter Example for Maximum Paths

For more examples, replace the P11 in the “spine” of the
example above by P2k+1, the “fan” of 15 vertices by a fan of
2k + 5 vertices, and the P5 “hanging path” by a Pk, shrewdly
placed so that it is a subpath of only 2 paths of order 2k + 3
in the graph G thus obtained. The maximum paths in G are
of order 2k + 3 and there are

|P(G)| = 2(2k + 5) + 2 = 4k + 12

of them. Meanwhile,

|V∗(P(G))| = |V(G)| = 5k + 8.

Since at most 2 paths in P(G) can be represented by vertices
of the hanging Pk, no more than 4k + 10 paths in P(G) can be
supplied with a system of distinct representatives.

The point is, we can produce connected graphs G with
|V∗(G)| − |P(G)| arbitrarily large that are not SDR-P-good.
However, these graphs are trees, and

|V∗(P(G))|
|P(G)|

<
5
4

for each such G. These observations raise two questions.

1. If G is 2-connected and |P(G)| ≤ |V∗(P(G))|, does it
necessarily follow that G is SDR-P-good? (A cut-
vertex in a connected graph G is a vertex v ∈ V(G)
such that G − v is not connected. A connected graph is
2-connected if and only if it has no cut-vertex. Obvi-
ously the graphs just described are not 2-connected.)

2. Is{
|V∗(P(G))|
|P(G)|

| G is connected and not SDR-P-good
}

bounded? If so, what is the least upper bound of this
set?

Hall’s Theorem

In a graph G, if v ∈ V(G) the open neighbor set of v in G
will be denoted NG(v). If S ⊆ V(G),

NG(S ) = ∪u∈S NG(u).

A matching in a graph G is an independent subset of E(G);
this means that no two different edges in the set share a ver-
tex. A matching M ⊆ E(G) saturates a set S ⊆ V(G) if and
only if each vertex v ∈ S is incident to some edge e ∈ M.

The following version of Hall’s (1935) theorem on sys-
tems of distinct representatives can be found in West (2001)
or almost any graph theory textbook.

Theorem 3 (Hall’s Theorem). For a bipartite graph G with
bipartition A, B, a necessary and sufficient condition for the
existence of a matching in G which saturates A is as follows:

For every S ⊆ A,

|NG(S )| ≥ |S |

In any graph G, the degree of a vertex v ∈ V(G) in G will
be denoted dG(v).

Corollary 4. Suppose that H is a bipartite graph with bipar-
tition A, B, and

min
a∈A

dH(a) ≥ max
b∈B

dH(b) > 0.

Then there is a matching in H which saturates A.
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Proof. Let δA = mina∈A dH(a) and ∆B = maxb∈B dH(b).
Suppose that S ⊆ A. Let E(S ,NH(S )) denote the set of

edges in H that have one end in S. Counting the edges in this
set by counting the edge ends in S, we have

δA|S | ≤
∑
a∈S

dH(a) = |E(S ,NH(S ))|

≤
∑

b∈NH (S )

dH(b) ≤ ∆B|NH(S )|

≤ δA|NH(S )|,

by the assumption that δA ≥ ∆B. By the assumption that
∆B > 0, we have that |S | ≤ |NH(S )|. Since S ⊆ A was
arbitrary, the conclusion follows from Theorem 3. �

Corollary 5. Suppose that G is a graph in which the maxi-
mum paths have order q. If every vertex of G lies on no more
than q maximum paths then G is SDR-P-good.

Proof. Let H be the bipartite graph with bipartition

A = P(G), B = V(G),

with a ∈ A, b ∈ B adjacent if and only if the vertex b is on
the path a, in G. By our assumption,

dH(a) = q ≥ dH(b)

for every a ∈ A, b ∈ B. By Corollary 4, there is a matching
M in H which saturates A. For ab ∈ M take b ∈ V(G) as
the representative of a ∈ P(G). The result is an SDR for
P(G). �

The following is a companion to Corollary 5.

Proposition 6. Suppose that every maximum path in P(G)
has order q and that every vertex in V∗(P(G)) lies on at least
q maximum paths in G. Suppose that at least one vertex of
G lies on more than q maximum paths in G. Then G is not
SDR-P-good.

Proof. Make a bipartite graph H with bipartition A = P(G),
B = V∗(P(G)), and p ∈ P(G), v ∈ V∗(P(G)) adjacent in H
if and only if v ∈ V(p) – i.e., v is a vertex on the path p.
Counting E(H) in two different ways, we have that

|E(H)| =
∑
p∈A

dH(p) = q|P(G)|

=
∑
v∈B

dH(v) > q|V∗(P(G))|

whence |P(G)| > |V∗(P(G))|. �

Example 1. The maximum paths on a cycle Cn are all of
the form Cn − e, e an edge. There are n of these, and each
vertex is on every one of them – these paths are Hamilton
paths. Therefore, since the order of the maximum paths is n,
by Corollary 5 Cn is SDR-P-good. Of course, this is fairly
obvious.

Example 2. The tree T in Figure 2 has 6 longest paths, each
of order 5. Vertices x, y, z lie on all 6 of these paths Here is
an SDR for P(T ):

φ(u1xyzv1) = u1, φ(u1xyzv2) = x,

φ(u2xyzv1) = u2, φ(u2xyzv2) = y,

φ(u3xyzv1) = u3, φ(u3xyzv2) = z.

This example shows that the sufficient condition for SDR-P-
goodness given in Corollary 5 is not necessary.

Figure 2. An SDR-P-good graph not satisfying the hypothe-
sis of Corollary 5.

Example 3. Since there is a Hamilton path in the Petersen
graph Pe (Fig. 3), the order of each maximum path in Pe is
10. We will see that Pe is not SDR-P-good.

Figure 3. The Petersen graph

Proposition 6 may come in handy. Since the Petersen
graph is vertex-transitive, different vertices lie on the same
number of maximum paths in Pe. A little work shows that
the vertex v is an end vertex of at least 12 different Hamilton
paths in Pe. Case closed: Pe is not SDR-P-good.

Of course it was not necessary to invoke Proposition 6 to
achieve this conclusion, since, by the claims above,

|P(G)| > 12 > 10 = |V∗(P(G))|.
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Extension to Maximum Cycles

SDR-C-good

We define SDR-C-good, C(G), and V∗(C(G)) analogously
to the definitions of SDR-P-good, P(G), and V∗(C(G)).

A natural question is if

|V∗(C(G))| ≥ |C(G)| ⇒ G is SDR-C-good

Theorem 7. If G is SDR-C-good, then

|C(G)| ≤ |V∗(C(G))|,

but this inequality is not sufficient for G to be SDR-C-good.

Proof. The necessary condition is obvious. Now, consider
Figure 4. �

Figure 4. Counter Example for Maximum Cycles

In Figure 4, x is in k C4’s which are otherwise vertex-
disjoint, while y, z, and w are all in each of t distinct C4’s.
There are also

(
t
2

)
C4’s, each with vertex set consisting of z,

w, and two of the vertices other than y to which z and w are
adjacent.

If
(

t
2

)
+ t > t + 3, i.e., if t > 3, then there is no way to

represent the
(

t
2

)
+ t C4’s on the left in Figure 4 by a system

of distinct vertex representatives, and so the graph G in this
figure is SDR-C-bad. On the other hand,

|V∗(C(G))| = 3k + t + 4 and |C(G)| = k + t +

(
t
2

)
,

so we can make
|V∗(C(G))|
|C(G)|

arbitrarily large.
We do have a question remaining, since obviously x and y

are cut-vertices of G: If a graph G is 2-connected, and

|C(G)| ≤ |V∗(C(G))|,

is G necessarily SDR-C-good?
Hall’s theorem leads to analogs of Corollary 5 and Propo-

sition 6 for maximum cycles.
Proposition 8. Suppose that G is a graph in which maximum
cycles have order q.

1. If each vertex of G lies on no more than q maximum
cycles in G, then G is SDR-C-good.

2. If each vertex of G lies on at least q maximum cycles,
and at least one vertex of G lies on more than q maxi-
mum cycles, then G is SDR-C-bad.

Note: We wish to commend and thank the referee, whose
diligence and constructive suggestions led to a considerable
improvement of the paper.
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