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In Computer Science, the hypercube is an important type of interconnected network of proces-
sors. Currently, there are many computers that are built using it, and many parallel algorithms
that are devised to use this network.
In this article, we find the formula to calculate the upper chromatic number of any n dimen-
sional cube, or a hypercube, such that every cycle C4 in the cube is colored with at most three
colors. We prove that the upper chromatic number of any n-dimensional cube, Qn with n ≥ 3,
such that each C4 in the cube is colored with at most three colors is given by: χ = 1 + 2n−1.
This can also be understood as coloring a mixed hypergraph H = (X,C,D) – in this case, the
cube – where each C4 is a C − edge and the D−family is an empty set.

Introduction

A graph is a figure made up of points, called vertices, and
lines, called edges, that connect exactly two points. A hy-
pergraph is an extended form of graph where edges, called
hyperedges, are subsets of the vertex set that can contain
more than two vertices. A mixed hypergraph, denoted by
H = (X,C,D) is a hypergraph where X is the vertex set, C is
the family of hyperedges called C-edges, and D is the fam-
ily of hyperedges called D-edges. Two vertices of a graph
are called adjacent or neighbors if they are connected by an
edge. The neighborhood of vertex x in graph G is the set of
all vertices in G that are adjacent to v.

Coloring of a graph is simply the labeling of its ver-
tices, generally by positive integers. A proper coloring of
a graph is the labeling of vertices of the graph in which
the adjacent vertices must have different colors. A proper
λ-coloring of a mixed hypergraph H = (X,C,D) is a map-
ping c : X → {1, 2, ..., λ} such that every C-edge has at least
two vertices with a common color and every D-edge has at
least two vertices with a different color (Voloshin, 2009). Let
G = (X, E) be a graph, and i be the number of used colors.
If each of i colors is used for the proper coloring of G, then
such coloring is called the strict i-coloring. The maximum
i for which there exists a strict i-coloring of a mixed hyper-
graph is called the upper chromatic number of that mixed
hypergraph. It is denoted by χ̄(H).

In a hypercube network, the number of processors, N, is
in terms of power of 2, N = 2m. The integer m is the number
of processors any processor has two-way connections with.
A processor Pi in this network is linked to other processors
with indices whose binary representations differ from the bi-
nary representation of Pi in exactly one bit (Rosen, 2012).

Figure 1. The n-cube Qn, n = 1,2,3, (Harary, Hayes, & Wu,
1988)

An n-dimensional cube, or n-cube, denoted by Qn, is de-
fined as a graph that has vertices representing the 2n bit
strings of length n. Any two vertices are considered adja-
cent if and only if the bit strings that they represent differ
in exactly one bit position (Rosen, 2012). A hypercube is
a geometric figure which is analogous to a cube in three-
dimensions. We may also denote Q3, Q4, Q5, Q6, . . . as 3D,
4D, 5D, 6D-cubes, . . ., respectively. A cycle Cn is defined as
a connected graph on n vertices where each vertex has degree
2. The degree of a vertex is the number of vertices adjacent
to it, or the number of its neighbors in the graph. So, a C4 is
a cycle made up of 4 vertices, all of which are connected to
exactly two other vertices in the graph.

Throughout the article, when we mention an n-size cube,
we will assume n ∈ Z, n ≥ 3. Also, when we say an op-
timal coloring of an n-dimensional cube, we mean it to be a
proper coloring using maximum number of colors possible.
Also, when we mention proper coloring for a hypercube, we
understand that the coloring follows the restriction that each
C4 in the cube is colored with at most 3 colors.
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Figure 2. Q4’s with their respective major Q3’s in different
orientations. In the cubes, the upper C4 and the lower C4 are
shadowed respectively.

Figure 3. Q4 with its major Q3s labeled with a common color
k = 1.

Description

Any cube of size n > 3 can be thought of as a cube made
up of multiple Q3’s. Such arrangements of Q3’s can be con-
structed in many ways. However, for the sake of uniformity,
we imagine any Qn+1 as the combination of a Qn and a copy
of the Qn, denoted by Q′n, whose corresponding vertices are
adjacent to each other. We define such n-cubes whose com-
bination forms a larger (n + 1)-cube as major cubes.

For example, a Q3 has only one major cube, which is it-
self. A Q4 has two major cubes, which are the two Q3s that
are combined to form that particular Q4. Similarly, a Q5 has
two major Q4’s, a Q6 has two major Q5’s, and so on.

We are trying to find the maximum number of colors
within the given constraint, and within the proper-coloring
conventions of a mixed-hypergraph. We know that for any C4
in a given cube, we need to have at least one repeated color
(or two vertices with the same color). To maximize the over-
all number of colors used, we repeat a single color for all C4s
in the cube. Such color which is to be repeated throughout
all C4s of a cube can be defined as common color, denoted
by k.

Figure 4. Q3 with k = 1 and four available vertices a, b, c,
and d.

The Algorithm

The following steps will help us set-up the optimum col-
oring of a Qn:

INPUT: Qn without labelling.

OUTPUT: Qn after the common color is applied.

1. Start by coloring the diagonal vertices of the upper C4
of a major cube of the cube with a common color
’k’ and go to the next C4 in the vertically downward
direction (See Figure 2 for upper and lower C4s and
Figure 4 for the direction and positioning).

2. Then, use k to color the diagonal vertices of either the
lower C4 of the same or the upper C4 of a different
major cube – whichever comes first in the vertical di-
rection – in alternating positions.

3. Similarly, color the diagonal vertices of the next clos-
est C4 in the same positions as the coloring in Step 1.

4. Repeat Step 2 and Step 3 for the alternating application
of k as long as no C4 of the nth cube remains colorless.

5. End.

This ensures that every C4 of the cube has two vertices
colored with the common color k.

At this point, we have used only one color and have set-
up the constraint in such way that each C4 of the cube has at
least one repeated color. Now, we can add as many different
colors as the number of remaining uncolored vertices.

Notice that for a Q3, we get 4 uncolored vertices after
the constraint is taken care of (See Figure 4). As any Qn

is some combination of 3D major cubes, the function that we
are looking for should look like: 1+4N where N, the number
of Q3s in the given Qn, is some function in terms of n.
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Figure 5. (a) On the left. (b) At the center. (c) On the right.

For all n > 3, Qn has 2n−3 number of major Q3’s. With
this, the maximum number of used colors becomes:

1 + 4(2n−3)⇒ 1 + 2n−1

As Qn has 2n vertices, the color k colors half of the ver-
tices, while the other half gets 2n/2 different colors. Also
notice that the vertices colored with k form a maximal inde-
pendent set (in any dimension).

How many common colors?

With the constraint that each C4 in the cube should be col-
ored by using at most 3 colors, the problem is to figure out
how to maximize the number of colors for successful color-
ing. We are concerned with whether the concept of using a
single k throughout the cube provides us with the maximum
number of colors. The question is: could we repeat multiple
colors throughout the cube instead of just one and achieve
optimum coloring? Figure 5 shows the difference between
repeating multiple colors and repeating a single color in a
simple Q3. Notice that the use of a single k (Figure 5(a)) op-
timizes the coloring and correctly gives the number of maxi-
mum colors in a 3D-cube.

Figure 5(b) and 5(c) show that if we repeat more than one
color, we either reduce the number of legitimate colors (as
shown in Figure 5(b)) or we violate the constraint altogether
(the cube in Figure 5(c) has C4’s colored with 4 different col-
ors).

Theorem and Proof

Lemma 1. An optimal coloring of a Qn can be achieved only
when all of its C4’s are colored with exactly three colors.

Proof. The upper chromatic number of a C4 is 4. How-
ever, under the given constraint, we know that no C4 in Qn

can be colored with four different colors. Therefore, as per
the proper coloring conventions of a mixed-hypergprah, the
maximum number of colorings in Qn can be achieved by col-
oring all C4s in the cube with exactly three colors. �

Lemma 2. If all the C4s of a Qn and its copy cube show
proper coloring with exactly three colors, then all the C4s
of the corresponding Qn+1 formed by their combination also
show proper coloring, given that the same k is repeated be-
tween the Qn and the Q′n in their diagonally alternating ver-
tices.

Figure 6. General representation of the Qn. The outer cube
represents the outermost major 3D-cube of the Qn, while the
inner cube represents the layer of all the major 3D-cubes
from dimension 3 to dimension n − 1.

Figure 7. General representation of the Qn+1 made up of Qn

and Q′n whose corresponding vertices are adjacent to each
other.

Proof. We prove this conjecture by cases and by contradic-
tion.

By contrary, let us assume that there exists a C4 in Qn+1
that does not show proper coloring with exactly three colors.
Let {x1, x2, x3, x4} be the vertices of that arbitrary C4.

If all of these vertices belong to the Qn, or if all belong to
Q′n, then they are colored properly with exactly three colors.
Notice that due to construction, it is impossible to have one
vertex from the set in the cube and three other vertices in
the copy. So, without loss of generality, let us assume that
x1 and x2 belong to the nth cube and x3 and x4 belong to the
copy (See Figure 7)). Also, let us assume that for both cubes,
k = 1.

This leads to two cases:
Case 1: The C4, {x1 x2 x3 x4}, is colored with less than

three colors:
Let us pick any C4 from an optimally colored Qn+1 with



4 BHANDARI & VOLOSHIN

Figure 8. x2 and x4 are available for new colors a and b.

two vertices on Qn and two vertices on its copy (as shown
in Figure 8). Notice that we will always end up having two
vertices, one from each cube, colored with the common color
k, and the remaining two vertices, again one from each cube,
colored with different new colors. This is because of the as-
sumption that both Qn and Q′n are properly colored using the
same k in their diagonally alternating vertices.

Now, let us try to color the vertex set {x1 x2 x3 x4} with
less than three colors. Since the set already has two vertices
colored with k, then the remaining two vertices cannot have
different new colors. This means we either have to color all
4 vertices with k or have to apply same new color for the
remaining two vertices. Either way, this implies that Qn or
Q′n has at least one C4 that is colored with less than three
colors, which is a contradiction.

Case 2: The C4, {x1 x2 x3 x4}, is colored with more than
three colors:

If all the vertices in the vertex set {x1 x2 x3 x4} are col-
ored with different colors, then the set does not have a re-
peated common color k. This is a contradiction because if
the Qn and its copy cube show proper coloring with exactly
three colors, and if they both have the same k, any C4 picked
from their connected configuration having two vertices on
each cube will also have two vertices labeled with k.

Since both cases lead to contradictions, they must be false.
Hence, the proposition is true. �

Theorem 3. Qn is a bipartite graph.

Proof. The hyper-cube Qn has 2n vertices where each vertex
corresponds to a binary string of length n. Any two vertices
labeled by strings x and y are adjacent if and only if y can be
obtained from x by changing exactly one bit. Let us partition

Figure 9. Coloring alternating diagonal vertices of Q3 with
a common color makes all of its C4’s colored with exactly
three colors.

the vertices of Qn in to two subsets: one with odd and another
with even number of 1s in their binary string representation.
This will divide the vertex set into two equal sized subsets.
In such partition, no edges in the cube will have its vertices
in the same subset, making Qn a bipartite graph. �

Theorem 4. Qn is an n-regular graph.

Proof. Let x be any arbitrary vertex of Qn, and let the set Nx

be defined as the neighborhood of x. Recall that in Qn, each
vertex corresponds to a binary string of length n. Therefore,
any vertex in Qn can be represented by a vector of length n,
such that each element of the vector is a bit string. Let Vx be
the binary vector of x. This implies that |Vx| = n. Consider a
vertex y, such that y ∈ Nx. We know that the binary vectors
of x and y must differ at exactly one position. Since |Vx| = n,
this can happen in n different ways. Therefore, |Nx| = n,
which means x is adjacent to n other vertices in Qn, making
Qn an n-regular graph. �

Theorem 5. The upper chromatic number of any n-
dimensional cube, Qn such that each C4 in the cube is colored
with at most three colors is given by:

χ = 1 + 2n−1, for all n ≥ 3.

Proof. Lemma 1 shows that an optimal coloring can be
achieved only when all of the C4’s of a cube are colored with
exactly three colors. So, to prove the theorem, it is impor-
tant to first verify whether we are coloring all the C4’s of a
cube with exactly three colors. This is when the use of com-
mon color becomes key. In our initial set-up, we colored the
alternating diagonal vertices of major Q3’s of a Qn with k,
and colored all the remaining vertices of the entire cube with
different new colors. Such application of k ensures that all
the C4’s of the cube have exactly two vertices available for
coloring. And, as we map all those pairs of vertices in each
C4 with new colors, we achieve the coloring where all the
C4’s of the cube are colored with exactly three colors–with k
repeated twice in all of them (See Figure 9 and Figure 10).

Now, we prove the theorem by the method of Induction.
We should realize that each time we upgrade the configu-

ration of a cube by increasing its dimension by 1, the number
of major Q3’s in the subsequent larger Qn doubles. For in-
stance, a 5D-cube has four major Q3’s, a 6D-cube has eight
major Q3’s, and so on(See Figure 11).
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Figure 10. Similar results with the 4D-cube.

Figure 11. A 5D-cube with its four distinct major Q3’s.

Let us assume that when n = k, when k ≥ 3, the statement
Pk: the upper chromatic number of a kth dimensional cube,
Qk, within the given constraints, χkth−cube = 1 + 2k−1, is true.
Now we try to prove that the theorem is valid for n = k + 1.
This is equivalent to proving

P(k+1) : χ(k+1)th−cube = 1 + 2(k+1)−1.

Any Qk+1 is made up of a Qk and Q′k whose correspond-
ing vertices are adjacent to each other. The Q′k has the same
common color as Qk. This is because the Qk and the Q′k com-
bine together to form a single Qk+1 and we do not want the
Qk+1 to have two repeated colors (we only repeat one color
throughout a cube). All the remaining vertices of Q′k will be
given different new colors in order to maximize the number
of used colors so that the optimum coloring can be achieved.
As the transition from k to k +1 doubles the number of major
Q3’s in a cube, for the (k + 1)th cube, the upper chromatic
number becomes:

χ(k+1)th−cube = 1 + 2k−1 + 2k−1

= 1 + 2(k+1)−1

Therefore, P(k+1) : χ(k+1)th−cube = 1 + 2(k+1)−1 is true. So,
by the Principle of Mathematical Induction, χ = 1 + 2n−1, for
all n ≥ 3. �

In Figures 12-14 we verify the conjecture applies correctly
in the simpler cubes.

Figure 12. A 3D-cube has an upper chromatic number of
1 + 4(23−3) = 5 under the given constraints.

Figure 13. A 4D-cube has an upper chromatic number of
1 + 4(24−3) = 9 under the given constraints.

Figure 14. A 5D-cube has an upper chromatic number of
1 + 4(25−3) = 17 under the given constraints.
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