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In this article we develop recursive and closed form formulas for the number of permutations
on n objects that agree with a given permutation in exactly & positions.

Introduction

The genesis of this investigation lies in a conversation the
author had with Mr. Mahmoud Elgibali, an Instructor of Ara-
bic and Islamic Studies at Zayed University in the United
Arab Emirates. During the conversation Mr. Elgibali related
an ancient practice of Persian leaders: making important mil-
itary and other governmental decisions based on entries of
a ten by ten matrix, each row of which and each column
of which contained the integers from one through ten. Mr.
Elgibali asked if the author could construct such a square
of numbers, and he left the gathering with a simple exam-
ple of one made up of shifts of an ordering of the integers
1,2,...,10.

Since no two rows of such a square can have identical en-
tries in any position, we quickly became interested in con-
structing permutations whose ith positions were not equal

to the ith positions of a given permutation. From that start-
ing point we proceeded to develop both recursive and closed
form formulas for the number of permutations of n symbols
that have exctly k positions with entries equal to those of a
given permutation of the same n symbols.

Conventions and Preliminaries

We say that a permutation q on n symbols is a one-to-one
function ¢g from {1, 2,...,n} onto {1,2,...,n}. Of course, we
could use any symbols; however, for convenience, we shall
use the integers from 1 to n. We say that the permutations q
and p agree at the ith position if, and only if, g(i) = p(i).

We shall denote by Pi(n) the number of permutations on
n symbols that agree with a given permutation in exactly k
positions. Of course, we should require k < n; however, for
convenience we shall agree that Py(n) = O for k > n. We
note that Py(n) is independent of the given permutation, and
for convenience we shall take the given permutation to be the
identity, p(i) = i foreach i € {1,2,...,n}.

We note that Pyp(1) = 0 and Py(2) = 1. Forn > 1,
P,(n) = 1. Thus, it is consistent to take Py(0) = 0.

Py(mn)
We begin with a recursive formula for Py(n):

Theorem 1. For each positive integer n > 2, Py(n) =
nPo(n—1)+ (-1~

We have noted that the statement is true for n = 1 and
n = 2, and we proceed inductively.

If g is a permutation on (n+ 1) symbols and does not agree
with the identity at any position, then we know that for some
a#n+1,qn+1) = a. One of two cases must hold: either
(D gla)#n+1or(2)gla)=n+1.

Consider the first case where g(n+1) = aand g(a) # n+1.
There is a j € {1,2,...,n}\ {a} so that g(j) = n+ 1. If we
swap the values of g(j) and g(n + 1), so that g(j) = a, and
consider only the set {g(1),g(2), ..., g(n)}, omitting g(n + 1)
from consideration, we have a permutation on n symbols,
with g(i) # i for any i € {1,2,...,n}. We should note that
this process does not necessarily yield distinct n-symbol per-
mutations when we operate on distinct (n+1)-symbol permu-
tations. For example, the permutations {4 12 3} and {342 1}
both yield {3 1 2}. However, our interest lies in reversing this
process and counting the number of distinct permutations on
(n + 1) symbols that can be constructed from a given permu-
tation on n symbols in this manner.

Each permutation ¢’ on n symbols yields n distinct permu-
tations on (n+ 1) symbols by selecting j = 1,2,...,n, setting
gn+1) = ¢'(j) and g(j) = n + 1. None of the permuta-
tions thus constructed agree with the identity at any position.
Thus, we have nPy(n) permutations on (n+ 1) symbols having
the form of case (1).

Consider the second case where g(a) = n + 1 and g(n +
1) = a. Now, consider only {g(1),¢(2),...,q(a — 1),q(a +
1),...,q(n)}. This is simply a permutation on the (n — 1)
symbols {1,2,---,a — 1,a + 1,--- ,n} that does not agree
with the permutation {1 2 --ra—1a+ 1 ---n} at any po-
sition, and there are nPy(n — 1) of these, for we may take
a=1,2,...,n. There is clearly a one-to-one correspondence
between permutations on (n + 1) symbols of the second type
and permutations of the symbols {1,2,--- ,a—1,a+1,--- ,n}
that do not agree with {12 ---a—1a+1 ---n}at any position.
Thus, we have nPy(n — 1) permutations on (n + 1) symbols
having the form of case (2).

However, nPo(n — 1) = Py(n) — (=1)" = Py(n) + (=1)"*1.
Combining the totals from these two cases, we have

Po(n+ 1) = (n+ DPy(n) + (=1,

An example should illustrate and motivate the subsequent
theorem.
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Example: We take n = 8. Py(8) = 8Py(7) + 1 = 8(7Py(6) —
D+1...

Po(8) = 8(7(6(3(4(3Py(2) = )+ = D)+ ) = 1) + 1

g 8 8 8 8 8

P0(8)=5—§+m—§+6—ﬁ+1.

Adding and subtracting 8!, and rewriting 1 as 8!/8!, we have:
1 1 1 1 1 1 1 1

Py(8) = 8! 1—1—!+2—!—§+I!—§+a—ﬁ+g .

Generalizing and considering the remainder term for al-
ternating series, we have:

!
Theorem 2. As n — oo, Py(n) — &, and
e
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From this, we can say that Py(n) = —, rounded to the
e
nearest integer.

Py(n)

In this section we find formulas for P(n) for k < n. Two
of these are closed form and do not require a recursive for-
mula; however, we include the recursive formula for com-
pleteness and because it is a generalization of the recursive
formula for Py(n).

Theorem 3. Pi(n) = (Z)Po(n — k).

We are counting the number of permutations on 7 objects
which agree with the identity in k positions. The formula
is an expression of our selecting k positions in which the
permutation agrees with the identity, while the other (n — k)
positions do not agree with the identity. For computation
purposes we might prefer:
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Corollary 1. Pi(n) = — -
k! 4 i!

We are tempted to use the approximation Pi(n) = :T',
le
rounded. However, when k£ # 0, the earlier termination of
n—k i
—1)
the finite series Z % leaves us with increasing differ-
4!
ences between Py(n) and n!/(kle) as n gets larger and as k
gets larger. For example, using the remainder approxima-
tion for alternating series, we have |P3(8) — 8!/(3le)| < %,
[P3(10) — 10!/(3le)| < 96—0, and |P4(10) — 10!/(4le)| < 1%0. In
the case where n = 10 and k = 4, the approximation gives
55, 623, while the actual value of P4(10) is 55, 650. The error
is less than 0.1%, but for a count, the approximation formula
does not yield exact results when k > 0, as it does when
k=0.
We now turn to the recursive formula for P (n).
Theorem 4. For each n > 2, and for each k such that

0<k<n Pr(n)=nPy(n-1)+ (Z)(_])'Hk'

From Theorem 3 we know that Py(n—1) = (";l)Po(n -1-
k), and we have that

nPe(n—1) +(Z)(—1)"+k - n(” )

)Po(n —1-k)+ (Z)(—l)"*k .
Noting that (—1)™* = (~1)"*, we have

nPun—1)+ (’;)(— 1y = (Z)((n —R)Po(n—1—k)+(=1)").

From Theorem 1, we have Po(n —k) = (n—k)Po(n—1—-k) +
(=1)*. Thus, by Theorem 3, we have

Pu(n) = nPy(n — 1) + (Z)(—])’”".
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