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In this article we develop recursive and closed form formulas for the number of permutations
on n objects that agree with a given permutation in exactly k positions.

Introduction
The genesis of this investigation lies in a conversation the

author had with Mr. Mahmoud Elgibali, an Instructor of Ara-
bic and Islamic Studies at Zayed University in the United
Arab Emirates. During the conversation Mr. Elgibali related
an ancient practice of Persian leaders: making important mil-
itary and other governmental decisions based on entries of
a ten by ten matrix, each row of which and each column
of which contained the integers from one through ten. Mr.
Elgibali asked if the author could construct such a square
of numbers, and he left the gathering with a simple exam-
ple of one made up of shifts of an ordering of the integers
1, 2, . . . , 10.

Since no two rows of such a square can have identical en-
tries in any position, we quickly became interested in con-
structing permutations whose ith positions were not equal
to the ith positions of a given permutation. From that start-
ing point we proceeded to develop both recursive and closed
form formulas for the number of permutations of n symbols
that have exctly k positions with entries equal to those of a
given permutation of the same n symbols.

Conventions and Preliminaries
We say that a permutation q on n symbols is a one-to-one

function q from {1, 2, . . . , n} onto {1, 2, . . . , n}. Of course, we
could use any symbols; however, for convenience, we shall
use the integers from 1 to n. We say that the permutations q
and p agree at the ith position if, and only if, q(i) = p(i).

We shall denote by Pk(n) the number of permutations on
n symbols that agree with a given permutation in exactly k
positions. Of course, we should require k ≤ n; however, for
convenience we shall agree that Pk(n) = 0 for k > n. We
note that Pk(n) is independent of the given permutation, and
for convenience we shall take the given permutation to be the
identity, p(i) = i for each i ∈ {1, 2, . . . , n}.

We note that P0(1) = 0 and P0(2) = 1. For n ≥ 1,
Pn(n) = 1. Thus, it is consistent to take P0(0) = 0.

P0(n)
We begin with a recursive formula for P0(n):

Theorem 1. For each positive integer n ≥ 2, P0(n) =
nP0(n − 1) + (−1)n.

We have noted that the statement is true for n = 1 and
n = 2, and we proceed inductively.

If q is a permutation on (n+1) symbols and does not agree
with the identity at any position, then we know that for some
a , n + 1, q(n + 1) = a. One of two cases must hold: either
(1) q(a) , n + 1 or (2) q(a) = n + 1.

Consider the first case where q(n+1) = a and q(a) , n+1.
There is a j ∈ {1, 2, . . . , n} \ {a} so that q( j) = n + 1. If we
swap the values of q( j) and q(n + 1), so that q( j) = a, and
consider only the set {q(1), q(2), . . . , q(n)}, omitting q(n + 1)
from consideration, we have a permutation on n symbols,
with q(i) , i for any i ∈ {1, 2, . . . , n}. We should note that
this process does not necessarily yield distinct n-symbol per-
mutations when we operate on distinct (n+1)-symbol permu-
tations. For example, the permutations {4 1 2 3} and {3 4 2 1}
both yield {3 1 2}. However, our interest lies in reversing this
process and counting the number of distinct permutations on
(n + 1) symbols that can be constructed from a given permu-
tation on n symbols in this manner.

Each permutation q′ on n symbols yields n distinct permu-
tations on (n+1) symbols by selecting j = 1, 2, . . . , n, setting
q(n + 1) = q′( j) and q( j) = n + 1. None of the permuta-
tions thus constructed agree with the identity at any position.
Thus, we have nP0(n) permutations on (n+1) symbols having
the form of case (1).

Consider the second case where q(a) = n + 1 and q(n +
1) = a. Now, consider only {q(1), q(2), . . . , q(a − 1), q(a +
1), . . . , q(n)}. This is simply a permutation on the (n − 1)
symbols {1, 2, · · · , a − 1, a + 1, · · · , n} that does not agree
with the permutation {1 2 · · · a − 1 a + 1 · · · n} at any po-
sition, and there are nP0(n − 1) of these, for we may take
a = 1, 2, . . . , n. There is clearly a one-to-one correspondence
between permutations on (n + 1) symbols of the second type
and permutations of the symbols {1, 2, · · · , a−1, a+1, · · · , n}
that do not agree with {1 2 · · · a−1 a+1 · · · n} at any position.
Thus, we have nP0(n − 1) permutations on (n + 1) symbols
having the form of case (2).

However, nP0(n − 1) = P0(n) − (−1)n = P0(n) + (−1)n+1.
Combining the totals from these two cases, we have

P0(n + 1) = (n + 1)P0(n) + (−1)n+1.

An example should illustrate and motivate the subsequent
theorem.
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Example: We take n = 8. P0(8) = 8P0(7) + 1 = 8(7P0(6) −
1) + 1 . . .

P0(8) = 8(7(6(5(4(3P0(2) − 1) + 1) − 1) + 1) − 1) + 1

P0(8) =
8!
2!
−

8!
3!

+
8!
4!
−

8!
5!

+
8!
6!
−

8!
7!

+ 1.

Adding and subtracting 8!, and rewriting 1 as 8!/8!, we have:

P0(8) = 8!
(
1 −

1
1!

+
1
2!
−

1
3!

+
1
4!
−

1
5!

+
1
6!
−

1
7!

+
1
8!

)
.

Generalizing and considering the remainder term for al-
ternating series, we have:

Theorem 2. As n→ ∞, P0(n)→
n!
e

, and∣∣∣∣∣P0(n) −
n!
e

∣∣∣∣∣ < 1
n + 1

.

From this, we can say that P0(n) =
n!
e

, rounded to the
nearest integer.

Pk(n)

In this section we find formulas for Pk(n) for k ≤ n. Two
of these are closed form and do not require a recursive for-
mula; however, we include the recursive formula for com-
pleteness and because it is a generalization of the recursive
formula for P0(n).

Theorem 3. Pk(n) =
(

n
k

)
P0(n − k).

We are counting the number of permutations on n objects
which agree with the identity in k positions. The formula
is an expression of our selecting k positions in which the
permutation agrees with the identity, while the other (n − k)
positions do not agree with the identity. For computation
purposes we might prefer:

Corollary 1. Pk(n) =
n!
k!

n−k∑
i=0

(−1)i

i!
.

We are tempted to use the approximation Pk(n) ≈
n!
k!e

,
rounded. However, when k , 0, the earlier termination of

the finite series
n−k∑
i=0

(−1)i

i!
leaves us with increasing differ-

ences between Pk(n) and n!/(k!e) as n gets larger and as k
gets larger. For example, using the remainder approxima-
tion for alternating series, we have |P3(8) − 8!/(3!e)| < 56

6 ,
|P3(10) − 10!/(3!e)| < 90

6 , and |P4(10) − 10!/(4!e)| < 180
6 . In

the case where n = 10 and k = 4, the approximation gives
55, 623, while the actual value of P4(10) is 55, 650. The error
is less than 0.1%, but for a count, the approximation formula
does not yield exact results when k > 0, as it does when
k = 0.

We now turn to the recursive formula for Pk(n).
Theorem 4. For each n ≥ 2, and for each k such that
0 ≤ k < n, Pk(n) = nPk(n − 1) +

(
n
k

)
(−1)n+k.

From Theorem 3 we know that Pk(n−1) =
(

n−1
k

)
P0(n−1−

k), and we have that

nPk(n−1) +

(
n
k

)
(−1)n+k = n

(
n − 1

k

)
P0(n−1− k) +

(
n
k

)
(−1)n+k.

Noting that (−1)n+k = (−1)n−k, we have

nPk(n− 1) +

(
n
k

)
(−1)n+k =

(
n
k

)
((n− k)P0(n− 1− k) + (−1)n−k).

From Theorem 1, we have P0(n− k) = (n− k)P0(n− 1− k) +
(−1)n−k. Thus, by Theorem 3, we have

Pk(n) = nPk(n − 1) +

(
n
k

)
(−1)n+k.
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