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When trying to solve a single transcendental equation f (x, a) = 0 that depends on two param-
eters x and a, we have found the standard root finders such as bisection and Newton’s method
lacking within the parameter range of a with multiple roots. Here we propose, implement, and
test a level set method for solving parameterized transcendental equations with bifurcation. We
create the elevation matrix data Z = f (x, a) ∈ Rn,n for x and a data vectors in Rn and draw the
level zero contour curve for the associated surface (x, a, f (x, a)) ∈ R3 via data interpolation.
The method is very simply implemented via MATLAB’s built-in contour command. It works
exceedingly well and is much faster than using standard root finders that generally fail do give
useful information near the bifurcation points or using continuation methods.

Introduction
The modeling and design of chemical plants and pro-

cesses relies on solving equations, algebraic, rational,
transcendental, differential, integral etc. Equations in a
single real variable x have been solved successfully for
a long time by using inclusion/bisection algorithms or
tangent inspired algorithms such as the secant and more
sophisticated methods that use derivative information as
Newton’s method and all of its variants. We refer to Fausett
(1999) and Engeln-Müllges and Uhlig (1996) for example.

When studying parameterized transcendental equations for
simple chemical engineering processes, a shortcoming of
the classical root finding algorithms becomes apparent when
there are multiple roots. This is the case whenever the plant
is operated at a point with multiple steady states. In this case,
the classical root finders Cheney and Kincard (2004), Sastry
(2006), and Balaji and Seader (1995) generally fail to find all
the steady states and they cannot find the bifurcation points
reliably. This leads us to investigate graphical means, to el-
evation matrices for the equation and to the level set method
for transcendental equations.

Chemical Engineering
Framework for Problems with

Static Bifurcation
Almost all problems faced by chemical and biochemical

engineers are non linear. One of the simplest practical
examples is the homogeneous non-isothermal and adiabatic
continuous stirred tank reactor, called CSTR for short.

The steady states of a CSTR are described by non linear
transcendental equations. If we consider the simple reaction

A =⇒ B

Figure 1. Schematic diagram of an adiabatic CSTR
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in an adiabatic CSTR, then the rate of reaction is given by

r = k0 · e−E/(R·T ) ·CA .

Assuming a constant volume V and a constant volumetric
flow rate q in the CSTR, the steady state equations are

q ·CA = q ·CA f − V · k0 · e−E/(R·T ) ·CA (1)

and

q · ρ ·Cp · (T − T f ) = V · k0 · e−E/(R·T ) ·CA · (−∆H) (2)

Here
q = volumetric flow rate, in l/min ;
CA = reactant concentration at the exit and at every point in
the CSTR, in mole/l ;
ρ = mixture average (constant) density, in g/l ;
Cp = mixture average (constant) specific heat, in cal/g·K ;
CA f = reactant feed concentration, in mol/l ;
V = active reactor volume; in l ;
k0 = frequency factor for the reaction, in 1/min ;
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E = reaction activation energy, in J/mole ;
R = general gas constant, in J/(mole·K) ;
T = temperature at the exit and at every point in the CSTR,
in K ;
T f = feed temperature, in K ;
∆H = heat of reaction, in J/mole .
By multiplying the material balance design equation by
(−∆H) and adding it to the heat balance design equation we
obtain a simple linear relation between T and CA, namely

CA = CA f + ρ ·Cp · (T f − T )/(−∆H) . (3)

Thus the two model equations (1) for our problem can be
replaced by the following simple equation in T :

q · ρ ·Cp · (T − T f ) = (4)

V · k0 · e−E/(R·T ) · {CA f + ρ ·Cp · (T f − T )/(−∆H)}(5)
·(−∆H) (6)

And CA can be retrieved from the solution of (4) by using
formula (3).
Our single model equation (4) has the the form

R(T ) = G(T ) ,

where G(T ) is the transcendental heat generating function of
the reaction on the right hand side and R(T ) is the linear heat
removal function on the left hand side of the previous heat
design equation. To illustrate the behavior of the solutions
to this transcendental heat balance design equation, we plot
both G(T ) and R(T ) against T .

Figure 2. Heat generation function G(T ) and heat removal func-
tion R(T )

Figure 2 shows that in a certain region of the parameter
s = q · ρ · Cp, the adiabatic CSTR has three steady states,
marked by (1), (2), (3) in the plot, where the line R(T ) and
the curve G(T ) intersect. From a steady state analysis point
of view, the steady states (1) and (3) are stable, while the
middle steady state (2) is unstable. The solution behavior
in Figure 2 is called bifurcation. The bifurcation points
for the parameter s are determined by the tangent lines that

represent R(T ) in the plot with dashed and dotted extreme
slopes s∗ and s∗. For any slope s∗ < s < s∗ there are three
steady states, while for any s > s∗ there is only one low
temperature steady state near (1) and for any s < s∗ there is
only one steady state solution for a large temperature T near
Tmax.

The equation R(T ) = G(T ) can be put into dimensionless
form by dividing both sides by q · ρ ·Cp · T f to become

y − 1 = αe−γ/y(1 + β − y) . (7)

Here we have set y =
T
T f
, α =

V · k0

q
, γ =

E
R · T f

, and β =

(−∆H) ·CA f

ρ ·Cp · T f
, where y denotes the dimensionless temper-

ature, α is the dimensionless pre-exponential factor, β is
the thermicity factor, and γ is the dimensionless activation
energy.

Given CSTR specific β and γ values, our task is to solve the
transcendental equation (7) for y on an interval of α values
for which there are multiple solutions.

Solution by Classical Root
Finders

In this section, we try to find the values of y in equation
(7) that correspond to the points labeled (1), (2), and (3) in
Figure 2 for a given interval (α1, α2) ⊂ R with multiplicity
and fixed β and γ. We first use a generic root finder such
as the bisection method that is available as the built-in MAT-
LAB function fzero.
The standard form f (y) = 0 of equation (7) is

f (y) = y − 1 − αe−γ/y(1 + β − y) = 0 . (8)

Figure 3. Solutions to equation (8) using MATLAB’s bisection
method fzero for β = 1 and γ = 8.5

Figure 3 was obtained by starting fzero from the extreme
relative temperature values y = 1 and y = 1 + β and fixed
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α. If fzero finds two separate roots of equation (8) for
one α, then fzero is again used to look for the middle
root starting from the average of the two solutions. This
is executed for n = 100 linearly increasing α values from
α1 = 285 to α2 = 305 for the fixed CSTR parameters β = 1
and γ = 8.5 in Figure 3. For approximately all α < 292,
the bisection algorithm fails to find any roots of (8) other
than the low y value one, even when starting from y = 1 + β.
Similarly for all α > 299, the only solutions found from the
low temperature starting point y = 1 by bisection are the
high temperature ones. This gives rise to the disconnected
solution curve of Figure 3. Note also that as soon as two
distinct solutions are found for one α, then the middle

solution guess of
ysoltop + ysolbot

2
produces a middle solution

of (8) when using MATLAB’s fzero. Refining the size
of α steps by choosing n = 1000 and smaller α steps, for
example, does not affect the size of the gaps in Figure 3 at
all.

The relatively large gaps in Figure 3 between the three
branches of the bifurcation curve are typical of inclu-
sion/bisection algorithms in the face of multiple roots. These
algorithms generally fail to supply any useful information
on the bifurcation points.

Our next classical trial method for solving the transcenden-
tal equation (8) is Newton’s method. The following figure
is obtained in MATLAB when using Newton’s method for
equation (8).

Figure 4. Solutions to equation (8) using Newton’s method for
β = 1 and γ = 8.5

The graph above looks much better since the gaps between
the three branches are smaller than those in Figure 3. But the
gaps near the bifurcation points can apparently not be filled
via Newton’s method either.

Graphical Solution via the Level
Set Method

Here we develop a faster and more reliable method, the
level set method, for finding all y values that solve equation
(8) for a given α parameter interval. We proceed in three
stages.
First we determine the range of α for which there are multiple
steady states. To illustrate, we look at Figure 5 with the graph
of f in equation (8) with α = 1300, β = 0.8, and γ = 10.

Figure 5. Graph of f in equation (8) for α = 1300, β = 0.8 and
γ = 10

To solve equation (8) for this data we need to find the
roots of the graph depicted in Figure 5. There are three
shallow intersections of the horizontal axis (y, 0) in the
plane with the graph (y, f (y)) ∈ R2 of f . The more shallow
these intersections become, the more unsatisfactory our
computation of roots becomes, using standard root finding
methods such as the inclusion/bisection method or the
Newton root finder.

Therefore we turn to graphical solution methods in this sec-
tion. We first find the bifurcation limits for a given data set
α, β, γ semi-graphically by using the previous figure as our
guide and relying on a slight variant of equation (7), namely

1
α

(y − 1) = e−γ/y(1 + β − y) ( = f̃ (y)) . (9)

The left hand side of equation (9) describes a line with
slope 1/α in the variable y that contains the point
(y, f̃ ) = (1, 0). The right hand side is exponential in y
with (y, f̃ ) = (1, e−γ · β) on its graph and e−γ · β > 0. The
MATLAB algorithm that we use to find the range of α values
with multiple crossings limits the search for tangents from
(1, 0) ∈ R2 to the graph of the exponential curve f̃ to y values
below the maximum of the right hand side of equation (9).
It then slides backwards along the curve, computing the
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maximal and minimal ratios of f̃ and y, i.e., it effectively
computes good approximations to the two extreme slopes
1/α1 and 1/α2 of tangent lines to the graph of f̃ that pass
through the point (1, 0), see Figure 6. The essential lines of
our MATLAB code for finding the bifurcation points are

y = [1:(bt/N):1+bt]; b = 1;
% y partition, N steps;
% b is a bifurcation marker

if bt < 0, y = y(1:N); N = N-1; end
% if bt < 0, we avoid division by zero

f = exp(-ga./y).*((1+bt)-y);
% exponential part of adiabatic non-iso
% equation (right side of (3) )

F = max(f); i = find(f == F);
% limit search for bifurcation to
% 1 <= y <= max(f) location

if i == 1, disp(’no bifurcation alphas for this
data’),
% if no bifurcation
al1 = 50; al2 = 1000; b = 0; end
% set default output

y = y - 1;
% shift y by 1

foyold = f(2)/y(2); k = 3; mi = 1; ma = 1;
% initialize

while (k < i & mi == 1)
% search for a min (=al2) of 1/al
if f(k)/y(k) < foyold, foyold = f(k)/y(k);
k=k+1; else mi = 0; end, end,

if (k >= N | k >= min(i)), disp(’no bifurcation
alphas for this data’),
al1 = 50; al2 = 1000; b = 0; else,
% no bifurcation: set default output
al2 = (y(k-1))/f(k-1); y0 = y(k-1)+1;
f0 = f(k-1); end

while (k < i & ma == 1)
% search for a max (=al1) of 1/al
if f(k)/y(k) > foyold, foyold = f(k)/y(k);
k=k+1; else, ma = 0; end, end

al1 = (y(k-1))/f(k-1);

The reciprocals of the extreme slopes then give us the ex-
treme parameters α1 and α2 as the bifurcation points for
equation (9). In Figure 6 the bifurcation limits α1 and α2
are displayed numerically in the plot’s title, as well as drawn
out on the graph by a little o and + mark, respectively, for
β = 1 and γ = 15.
Following our first step of finding the bifurcation points α1
and α2, we secondly form the elevation matrix

Z = F(α, y) = y − 1 − αe−γ/y(1 + β − y) ∈ Rn,n (10)

as a function of two discrete variable n-vectors in α and y
for the physically relevant range 0.9 · α1 ≤ α ≤ 1.1 · α2
and 1 ≤ y ≤ 1 + β. This includes the parameter interval
(α1, α2) ⊂ R in which there is bifurcation. The equation
(10) with z = F(α, y) = 0 re-interprets our earlier equa-
tion (8) f (y) = 0 by replacing the repeated 1-dimensional
root finding attempts with varying α values in bisection or

Figure 6. Bifurcation limits for equation (8) for β = 1 and γ = 15

Newton by a 2-dimensional direct approach to root finding
in the two variables α and y. The elevation matrix Z ∈ Rn,n is
displayed graphically in MATLAB as a 3D surface over the
relevant α-y rectangle in Figure 7. Thirdly, the bifurcation
curve of all solutions to the four equivalent equations (7) to
(10) relate y and α. This curve is the projection of the level
zero curve F(α, y) = 0 of the elevation matrix surface Z
onto the α-y plane where the height z = 0. Our 3D plot of
the surface (α, y, F(α, y)) in Figure 7 contains this level curve
marked in black on the surface, as well as a second, isolated
plot of it below the surface in blue.

Figure 7. Surface of the elevation matrix Z = F(α, y) and its level
zero contour plots for 15000 ≤ α ≤ 95000, β = 1 and γ = 15
obtained from equation (10)

In Figure 7 note the very shallow and flat topography
of the elevation surface for F above the sub-rectangle
1 ≤ y ≤ 1.2 and 50, 000 ≤ α ≤ 100, 000 that is problematic
for the classical root finders.
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MATLAB finds a contour curve of a surface by interpolating
the surface data and it does so very efficiently and accurately,
even for “shallow or flat data”. On the other hand, the rela-
tively steep slopes at surface points with high y values near
1 + β in our plot help explain why the classical root finding
methods can easily overshoot the high or low y value roots
near the bifurcation points.

Figure 8 gives a detailed plot of the level zero curve of the
solutions to F(α, y) = 0.
The numerically active part of the MATLAB code that draws
the bifurcation curve plot in Figures 7 and 8 consists of four
lines

[y,al] =
meshgrid([1:bt/N:1+bt],[0.8*a11:(1.2*a22-0.8*a11)/
N:1.2*a22]);

% make grids for y and alpha in relevant ranges
for y and beta

z = adiabNiso(y,al,bt,ga);
% z = adiab Non-iso function value

C = contour(al,y,z,[0 0],’b’);

once the bifurcation points α1 (= a11) and α2 (=
a22 in the above code) have been found as detailed earlier.

Figure 8. Level zero contour plot for F in equation (10) for
10, 000 ≤ α ≤ 110, 000, with β = 1 and γ = 15

The numerical values for the steady state temperatures y at
one specific α value can be found by further 2D interpolation
of the level zero curve. A typical result is depicted in red in
Figure 9 for α = 50, 000 and β = 1, γ = 15.
For a comparison of the methods, in Figure 11 we have su-
perimposed the data from the bisection algorithm of Figure 3
(with circle symbols) on top of the level set method’s graphi-
cal output depicted by the solid line in Figure 10 below which
depicts the level method solution curve for β = 1 and γ = 8.5.

Figure 9. Level zero contour plot for F in equation (10) for
10, 000 ≤ α ≤ 110, 000, β = 1 and γ = 15; with steady state
temperatures y1, y2, and y3 for α = 50, 000

And likewise in Figure 12 for the output of Newton’s algo-
rithm from Figure 4 (with star symbols) and the level set
method result, both times for β = 1 and γ = 8.5.

Figure 10. Bifurcation curve of the level set method for β = 1 and
γ = 8.5

Figures 10 to 12 make it obvious that the level set method
gives much more meaningful numerical results and a clearer
graphical representation of the multiple steady state solutions
of the CSTR problem described by equations (7) to (10).
By all appearances the level set method is far more reliable
near the bifurcation points and surpasses and supersedes our
initial more generic root finding attempts.
In Figures 10 to 12, the bifurcation points were determined
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Figure 11. Bifurcation curve: level set method (solid line –); bi-
section method (circles ◦)

Figure 12. Bifurcation curve: level set method (solid line –); New-
ton method (stars ∗)

numerically by exploiting the graphical situation of Figure 6.
The two bifurcation points for α are indicated by two dotted
vertical lines. A visual inspection shows a perfect match
between the computed bifurcation points α1 and α2 and the
extremes of the solution function excursions. Moreover,
our graphically obtained data and that obtained from the
bisection or Newton’s algorithm are perfectly consistent
with the part of the graph where bisection data or Newton
data are available.

Finally, we depict the three level curve generating plots in
one composite figure. Having given consideration to rela-
tively low parameter values, such as β = 1 and γ = 8.5 which
have a small α range with bifurcation, we now choose a set of
relatively large parameters β = 1.2 and γ = 20 that shows the

wide dynamic range of the bifurcation points αi, depending
on the particular CSTR reaction.

Figure 13. Combined plot of the function graph, the elevation
matrix graph, and the level zero contour plot for F in equation (10)
for 10, 000 ≤ α ≤ 9, 000, 000, β = 1.2 and γ = 20

Conclusions
It has become customary to try and use continuation meth-

ods to solve parameterized equations with bifurcation. How-
ever, one drawback to continuation, especially for these
equations from chemical engineering is the relative difficulty
of finding feasible starting values for the continuation pro-
cess itself, i.e, to obtain one point on each branch of the fam-
ily of solution curves. This generally requires a user interface
and may be difficult to accomplish.
In contrast, the level set method needs no user interface, no
knowledge of feasible starting points for continuation, nor
any knowledge of the number of branches of the solution
curve. The level set method is entirely self-contained in the
three MATLAB code lines

... meshgrid ...;

... surface ....;

...contour ...

that were mentioned earlier. These three code lines
automatically give the right answers to all such problems
and they do so very quickly.

References
Balaji, G. V. and Seader, J. D. (1995). Application of inter-

val Newton’s method to chemical engineering problems.
Reliable Computing, pages 215–223.

Cheney, W. and Kincard, D. (2004). Numerical Mathematics
and Computing. Thompson Learning, Inc.



A GEOMETRIC LEVEL SET METHOD FOR TRANSCENDENTAL EQUATIONS FROM CHEMICAL ENGINEERING 7
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