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1 Introduction

Some time in April 2009, the third author ran across
some numbers in Chapter 10 of The Blind Watch-
maker Dawkins (1996), a popular explanation of
evolution by the great evolution explainer Richard
Dawkins, that he (the third author) could not ver-
ify. These numbers were counts of different “family
trees” indicating degrees of “cousinhood” or order of
descent, among categories of living things. For exam-
ple, if we are interested in (relative) cousinly relations
among 3 species, say lions and tigers and bears (as-
suming those to be species), there are 3 hypothetical
trees to consider:

∗This work was supported by NSF grant no. 1004933.

(Please understand that, for instance,

is the same as the last of the 3 trees above.)
Dawkins casually asserts that with 4 species

there are 15 different family trees; with 11
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species, 654,729,075 possible trees; and with 20
species, the number of different possible trees is
8,200,794,532,637,891,559,375, according to Richard
Dawkins.

The third author puzzled over these figures for a
bit, hoping to discover the formula or process by
which they were obtained. No inspiration bloomed;
the question was stowed in a special file for possi-
ble future use in Auburn University’s Research Ex-
perience for Undergraduates in Algebra and Dis-
crete Mathematics. Fifteen months later the file was
opened and the question answered. This led to a
harder question, which was also answered, to the
amazement of the third author; the coup de grace
was administered months after the end of our 2010
REU by the second author, with the assistance of
the first. What follows is an account of the results
discovered. These discoveries are not new (although
one proof might be), but that does not mean that
they are widely known. At the least, our inquiry in-
volves the resurrection of a great nineteenth century
theorem in graph theory.

2 Definitions and fundamentals

A graph is a very simple geometric object, a pair of
sets (V,E), in which V is the set of vertices, or nodes,
and E is the set of edges. The only geometric assump-
tion is that each edge has two ends, and at each end
is a vertex of the graph. If v ∈ V is at one end of
e ∈ E, we can say that that end of e is sticking into,
or incident to, v. The two vertices at the ends of an
edge are said to be adjacent in the graph.

If both ends of e ∈ E are incident to the same
v ∈ V , we say that e is a loop. If v, w ∈ V are the
two vertices at the ends of two or more different edges
of the graph, then we say that vw is a multiple edge
of the graph. If a graph has no loops nor multiple
edges, it is simple.

For any graph (V,E), the degree, or valence, of a
vertex v ∈ V is the number of edge ends sticking
into it. For example, in Figure 1, above, there are
vertices of degrees 3, 3, 5, and 1 in the non-simple
graph, and vertices of degrees 2, 2, 3, and 1 in the
simple graph. There is a fundamental numerical re-

Figure 1: A graph with a loop and a multiple edge,
and a simple graph

Figure 2: C3, C4, and C5

lation between the degrees and the number of edges
in any finite graph: the sum of the degrees is twice
the number of edges. This fact, which comes in quite
handy, arises from the requirement that each edge
has two ends, and so is counted twice in taking the
sum of the degrees.

A graph is connected if a bug can walk from any
vertex of the graph to any other vertex along the
edges of the graph. For n ≥ 3 the cycle Cn is the
graph that can be drawn to look like a regular poly-
gon with n vertices and n sides. See Figure 2.

A simple graph is acyclic if it contains no Cn,
n ≥ 3, as a subgraph. A tree is an acyclic connected
simple graph. The one fact about trees that we shall
need is this: in every finite tree, the number of edges
is one less than the number of vertices. Therefore, in
a tree on p vertices, the degree sum is 2p− 2.
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Figure 3: Two full binary trees with 4 and 6 leafs,
and two full ternary trees with 7 leafs each.

For an integer n ≥ 2, a full n-ary tree is a finite
tree with one vertex, the root, of degree n, and with
all other vertices of degrees 1 or n + 1. In the cases
n = 2, 3 we write binary, ternary rather than 2-ary,
3-ary, respectively. The vertices of degree 1 in any
tree are called leafs. See Figure 3.

Suppose that G is a full n -ary tree with m leafs
and k non-leafs. By a previous remark about degree
sums in trees, we have

m + n + (k − 1)(n + 1) = 2(m + k)− 2,

which implies

m = (n− 1)k + 1.

Therefore G has m + k = nk + 1 vertices, and nk
edges.

Suppose that G and H are simple graphs. An iso-
morphism from G to H is a function ϕ : V (G) →
V (H), one-to-one and onto, such that u, v ∈ V (G)
are adjacent in G (i.e., uv ∈ E(G), in common nota-
tion) if and only if ϕ(u), ϕ(v) are adjacent in H. If
there is an isomorphism ϕ from G to H then ϕ−1 is
an isomorphism from H to G; we say that G and H
are isomorphic.

You can think of an isomorphism as moving the
vertices of one graph onto the vertices of another
graph and dressing the edges so that the “moved”
graph coincides with the “target” graph. Thus two
simple graphs are isomorphic if and only if they are

Figure 4: Two different drawings of C4, and two dif-
ferent drawings of the same fulll binary tree.

(different) incarnations, or drawings, or representa-
tives, of the same thing—their isomorphism class.
This is by way of saying that “being isomorphic” is
an equivalence relation on the set of (all drawings of)
simple graphs. As in other areas of mathematics, it is
customary to be casual about distinguishing between
an isomorphism class and any particular representa-
tive of that class. Unless otherwise specified, the term
graph henceforward will refer to an isomorphism class
of simple graphs. See Figure 4.

Suppose that G and H are (representatives of)
graphs and that in each there are m vertices distin-
guished by the same labels, s1, . . . , sm. We will say
that G and H are isomorphic as partially labeled sim-
ple graphs if and only if there is an isomorphism from
G to H which takes the vertex labeled si in G to the
vertex labeled si in H for each i = 1, . . . ,m.

If G and H are isomorphic as partially labeled
graphs, then they are isomorphic. Therefore, in Fig-
ure 5, the two (isomorphic) partially labeled trees on
top cannot be isomorphic as partially labeled trees
to either of the partially labeled trees below them.
The two lower trees are clearly isomorphic as simple
graphs, but not as partially labeled simple graphs.
For one thing, the vertices labeled s1 and s2 have a
common neighbor in one of the drawings, but not in
the other.

Now we can make precise the problem sketched in
the Introduction. The problem is to calculate the
number f(m) of isomorphism classes of full binary
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Figure 5: Four full binary trees with labeled leafs.
The top two and only the top two are isomorphic.

trees with m leafs, labeled s1, . . . , sm.

It will seem obvious to many readers that these
different isomorphism classes do indeed represent the
different possible relative kinship relations or orders
of descent among any m species, but even for those
who are quite sure that they have grasped the con-
nection between our mathematical counting problem
and Dawkins’ genealogical counting problem, it may
prove useful to list some of the assumptions and
premises involved.

1. Speciation is assumed to be binary, meaning that
new species are formed by old species splitting
into two. When this occurs in nature, usually

one of the two “new” species is indistinguishable
from the “old” parent species; nonetheless, in any
modelling of species relations, the parent species
will be considered to be distinct from each of its
sibling children.

2. In a full binary tree with labeled leafs, repre-
senting a conjecture abut the order of descent
of given species corresponding to the leaf labels,
every node represents a (hypothetical) species.
When two nodes are the sibling offspring of a
parent node in the tree, it does not necessarily
mean that the species represented by the par-
ent node split into the two species represented
by the sibling offspring nodes, although that is
a possibility; rather, it means that the species
of the parent node is a common ancestor of the
two species of the sibling nodes, and not just any
common ancestor, but the nearest common an-
cestor of the two. (We leave to the reader the
pleasure of making precise what this means, and
of verifying that any two species with a common
ancestor have a unique nearest common ances-
tor.) For example, the tree

would be Dawkins-interpretable as asserting that
s2 and s3 have a common ancestor distinct from
each, and that their nearest common ancestor
has a common ancestor with si; further, s1 is
not the nearest common ancestor of s2 and s3,
nor is s1 an ancestor of that nearest common
ancestor.

3. From 2 it can be seen that the species repre-
sented by the labels on the leafs of a full binary
tree purporting to depict the relative relatedness
of them all must (if the depiction is correct) have
a common ancestor, the root of the tree, and
have no offspring species themselves—it would
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be said that these species are terminal. These
necessary conditions on the cohort of species un-
der consideration for there to be a valid depiction
of their relatedness by one of our labeled trees
are generally assumed uncritically. It behooves
us to point out that these assumptions could,
plausibly, be invalid. For instances, if the cohort
included wolves and slime molds, it is possible
that there may be no common ancestor. And if
the cohort included an extinct species of which
it is not known if it had descendants, then there
could be a problem with terminality. However,
the problem is moot if it is clear that none of the
other species in the cohort could possibly be a
descendant of the extinct one.

4. Suppose that s1, . . . , sm are distinct species such
that no si is an ancestor of any sj , i 6= j, and
s1, . . . , sm have a common ancestor. Under these
assumptions, and the assumption of binary spe-
ciation, there must be a true “order of descent”
for these m species expressible as a full binary
tree with m leafs labeled s1, . . . , sm. This is not
completely trivial to see, although many would
be willing to take it for granted; for those who
want stronger assurance, we suggest induction
on m.

If we were on a planet where speciation is n-ary,
for some n > 2, then the analysis of order of descent
would be more complicated. In particular, the or-
der of descent of given species s1, . . . , sm satisfying
the requirements stated above will very likely not be
representable by a full n-ary tree with leafs labeled
s1, . . . , sm.

For one thing, the number of leafs in a full n-ary
tree must equal 1 mod n − 1, by previous remarks,
and if n > 2, m may well not equal 1 mod n − 1.
But that is merely an indication that the case n = 2
is relatively simple in comparison to the cases n > 2
in analyzing order-of-descent possibilities, under the
assumption of n-ary speciation—there are more sig-
nificant differences. Peering into the logic of the sit-
uation, we find (explanation omitted!) that on a
planet with n-ary speciation, given m distinct species
s1, . . . , sm, m ≥ 2, none an ancestor of any other,

with the existence of a common ancestor known or
assumed, the different possible orders of descent of
these m species are in one-to-one correspondence, and
are representable by, the isomorphism classes of the
partially labeled rooted trees with

(i) m leafs labeled s1, . . . , sm; also, the root is la-
beled;

(ii) the degree of the root is one of 2, . . . , n;

(iii) the degree of each unlabeled vertex (i.e, each ver-
tex which is neither the root, nor a leaf) is one
of 3, . . . , n + 1.

These partially labeled trees also represent the pos-
sible orders of descent when speciation is variable i.e.,
when new species are formed by old species splitting
into any number between 2 and n of new species.
Note that when n = 2 these partially labeled trees
are precisely the full binary trees with labeled leafs;
in a full binary tree the root is the only vertex of de-
gree 2, so it makes no difference whether the root is
labeled or not.

It is a worthy goal to count the isomorphism classes
of the partially labeled trees described above, and to
obtain the answer as a recursion formula, if not an
outright formula, in m and n. However, this is not
the goal we achieve in this paper. In this paper we
find a formula in n and k, n ≥ 2, k ≥ 1, for the num-
ber of (isomorphism classes of) full n-ary trees with
m = k(n−1)+1 labeled leafs. We are very happy with
this achievement—but is the goal achieved a worthy
one? Have we counted something worth counting,
if n > 2? Here is another interpretation of a full
n-ary tree with m = k(n − 1) + 1 labeled leafs, be-
sides a depiction of a possible order-of-descent of m
species, under the assumption of n-ary speciation. If
the m species were known (or assumed) to be the
full cohort of terminal species descendant from some
species—the root—by n-ary speciation, then the pos-
sible orders of descent, which, in this case, are exactly
the same as the family trees of actual descent, are
given by the full n-ary trees with m leafs labeled with
the names of the m species. To make the distinction
clearer: none of the full binary trees with 3 leafs la-
beled lions and tigers and bears in the Introduction
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would be thought to describe the actual descent of
3 species of the lions, tigers, and bears, respectively,
from a common ancestor, with only one intermediate
species splitting into two of the terminal species. But
clearly one of those partially labeled trees, almost
certainly the one that makes lions and tigers more
closely related to each other than to bears, describes
a correct order of descent, under the assumption of
binary speciation.

3 Results and proofs

When the third author posed the problem of finding
f(m), the number of (isomorphism classes of) full
binary trees with m leafs labeled s1, . . . , sm, with the
family tree interpretation, to the 2010 Auburn REU,
several participants plunged into the groundwork of
computation, finding f(2) = 1, f(3) = 3, f(4) = 15,
f(5) = 105, f(6) = 945, and f(7) = 10, 395. Do
you see the pattern? The thrid author did not, but
the first author did, and once the right answer was
discovered a proof was not difficult to find.

Theorem 1. For m ≥ 2, f(m) = Πm−2
j=0 (2j + 1), the

product of the odd positive integers from 1 through
2m− 3.

Proof. The proof will be by induction on m. It is
clear that f(2) = 1. Suppose that m > 2. For every
t ≥ 2, let Ft denote the set of (isomorphism classes
of) full binary trees with t leafs labeled s1, . . . , st. We
shall finish the proof, with the help of the induction
hypothesis, by showing that from each T ∈ Fm−1
we can produce 2m− 3 distinct members of Fm, and
that every member of Fm arises as one of these 2m−3
from exactly one T ∈ Fm−1.

Suppose T ∈ Fm−1. By previous remarks, T has
2m− 4 edges. Pick one of these, insert a new vertex
in the middle of that edge, and hang a leaf labeled
sm off that new vertex. See Figure 6.

It is clear that the result is a full binary tree with
m leafs labeled s1, . . . , sm. To see that no two of
the 2m − 4 partially labeled trees thus created from
T are isomorphic, observe that if T1 and T2 result
from different choices of edge in T , then for some
j ∈ {1, . . . ,m− 1}, the distance in T1 from sj to sm

↓

Figure 6: One way to make T ′ ∈ Fm from T ∈ Fm−1

will be different from that distance in T2. (See West
(2001) for the definition of distance between vertices
in a connected graph.)

The (2m − 3)rd member of Fm to be gotten from
T is indicated in Figure 7.

Figure 7: Another way to get T ′ ∈ Fm from T ∈
Fm−1

Finally, to see that each T ′ ∈ Fm is one of the
2m−3 partially labeled trees generated from one and
only one T ∈ Fm−1, note that by locating the leaf
labeled sm in T ′ one can easily obtain the T that T ′

came from.
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Following this triumph the third author half-
jokingly suggested that there might be planets on
which speciation is n-ary for some n > 2, and that the
counterpart of Professor Dawkins on such a planet
would therefore wish to know how many different full
n-ary trees with labeled leafs there are, for each value
of the leaf number. (At the time we had not grasped
that the Earth’s Professor Dawkins was interested iin
order-of-descent trees, not pure family trees.) Since
the leaf number for such a tree is m = k(n − 1) + 1,
where k is the number of non-leafs, it seemed practi-
cal to pose the problem in terms of k, rather than m,
which is not as freely choosable. We define gn(k) to
be the number of different (isomorphism classes of)
full n-ary trees with k non-leafs, with labeled leafs,
k = 1, 2, . . .. When n = 2, m = k + 1, and so

g2(k) = f(k + 1) = 1 · 3 · · · (2k − 1).

Amazingly, based on some (increasingly difficult)
computations and inspired guesswork, the gang of
four REU participants working on the problem very
quickly came up with a proposed recursion formula
for gn(k):

gn(k) =

(
nk − 1

n− 1

)
gn(k − 1) (1)

If valid, this recursion wold determine gn(k) for all
n ≥ 2, k ≥ 1, because gn(1) = 1 for all n ≥ 1.

It is straightforward to see that (1) holds when
n = 2. It was also found to hold for several small
values of k when n ∈ {3, 4}, and for k = 2, 3 for all
values of n. Strong evidence! But the proof in the
case n = 2 did not generalize in any way that we
could see to give (1).

The second author, with the assistance of the first,
refused to give up, and in October or November of
2010, like an archaeologist uncoverng a key relic at an
excavation, she ran across a nineteenth century theo-
rem, a graph theory classic with which, as with many
classics, we are insufficiently acquainted, which, she
saw, would cleanly dispatch the question of gn(k).

Cayley’s Theorem (West (2001), Corollary 2.2.4,
p. 83)
Suppose that t ≥ 2 and d1, . . . , dt are positive
integers that add up to 2t− 2. The number of

different trees on labeled vertices v1, . . . , vt in which
vi has degree di, i = 1, . . . , t, is given by the
multionomial coefficient

(
t− 2

d1 − 1, . . . , dt − 1

)
=

(t− 2)!

Πt
i=1(di − 1)!

As a corollary one obtains a better-known result,
Cayley’s Formula: the number of different trees on
labeled vertices v1, . . . , vt is tt−2.

Cayley’s proof of his theorem, which appeared in
1889, was algebraic, involving generating functions.
The proof in West (2001) is more combinatorial and
graph theoretic, involving Prüfer sequences.

Theorem 2. For n ≥ 2, k ≥ 1,

gn(k) =
(nk − 1)!

(k − 1)!(n− 1)!(n!)k−1
.

Proof. A full n-ary tree with k non-leafs (including
the root) has 1 vertex of degree n, k − 1 of degree
n + 1, and the rest, k(n − 1) + 1 of them, of degree
1. By Cayley’s Theorem, with t = nk + 1, there

are (nk−1)!
(n−1)!(n!)k−1 such trees with fully labeled vertices,

with the vertices having these prescribed degrees. To
count the isomorphism classes of full n-ary trees with
labeled leafs and k non-leafs, one divides that number
by (k−1)!, because you get the same leaf-labeled tree
for every permutation of the labels among the k − 1
vertices of degree n + 1.

What remains? As indicated previously, it would
be nice to enumerate possible orders of descent of
a given cohort of m terminal species, under the as-
sumption of n-ary speciation, n > 2. By previous
remarks about the trees to which these orders of de-
scent correspond, and Cayley’s Theorem, we have a
“formula” for these numbers, involving a daunting
sum of daunting multinomial coefficients. This ex-
pression is not totally useless, but it is ugly. Is there
a simplification?

Also, it would be of interest to find a proof of The-
orem 2 of the same ilk as that of Theorem 1.
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