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Introduction

I would like to thank the AACTM for inviting me to give
the 2011 Lewis-Parker Lecture. This paper, which is based
on the lecture, revisits some basic ideas and results about
the Möbius group and Bergman metric on the unit disk, and
discusses the theory of atomic decomposition and some ap-
plications. We refer the reader to the references listed at the
end of this paper for more information.

Möbius group

Denote the complex plane by C and the extended complex
plane by Ĉ = C ∪ ∞. A Möbius transformation of Ĉ is a
rational function of the form

ϕ(z) =
az + b
cz + d

with coefficients a, b, c and d in C satisfying ad − bc , 0.
It is standard that if ϕ(z) = az+b

cz+d is a Möbius transforma-
tion, then ϕ−1(z) = dz−b

−cz+a is also a Möbius transformation,
and

1. ϕ is one-to-one and onto;
2. ϕ is the composition of translation, dilation, and the in-

version;
3. ϕ maps circles to circles.
Under the composition, the set of all Möbius transforma-

tions forms a group, called the Möbius group.
As an example of Möbius transformations map circles to

circles, we check the image of the circle |z − z0| = r (r > 0),
under the inversion w = ϕ(z) = 1

z . Indeed, it is clear that the
image is the circle |w| = 1

r if z0 = 0. If z0 , 0, the image
under ϕ can be described by all w ∈ Ĉ satisfying∣∣∣∣∣ 1

w
− z0

∣∣∣∣∣ = r ⇐⇒ |1 − z0w| = r|w| or equivalently


1 − 2Re(z0w) = 0, if |z0| = r;∣∣∣∣w − z0

|z0 |
2−r2

∣∣∣∣ = r
||z0 |

2−r2|
, if |z0| , r.

The first equation above represents a line (circle with radius
∞), and the second equation is a circle with center z0

|z0 |
2−r2 and

radius r
||z0 |

2−r2|
.

Denote by D the unit disk of the complex plane C and by
∂D the unit circle, which is the boundary of D. The Möbius
group on the unit disk, denoted by Aut(D), is the set of all
conformal self-map on D. There are infinitely many such
conformal mappings. For example, for any fixed a ∈ D, it is
not hard to verify that the Möbius transformation

ϕa(z) =
a − z

1 − az
,

which interchanges 0 and a, maps D to itself conformally,
and maps ∂D to ∂D. It is also easy to check that ϕ−1

a = ϕa.
To characterize Aut(D), we need the following lemma

(see, for example, (Garnett, 2007)).

Schwarz’s Lemma. If an analytic function f : D → D sat-
isfies f (0) = 0, then

| f (z)| ≤ |z|, ∀z ∈ D \ {0} and | f ′(0)| ≤ 1.

Equality holds at some point z or | f ′(0)| = 1 if and only if
f (z) = cz for all z ∈ D with c a unit module constant.

Proof sketch: Define g : D→ C by

g(z) =


f (z)
z
, if z ∈ D \ {0};

f ′(0), if z = 0.

Then g is analytic in D. Using the Maximum Modulus Prin-
ciple (see, for example, (Conway, 1973)), which says that if
f is an analytic function then the modulus | f | cannot exhibit
a true local maximum properly within the domain of f , we
can conclude that

|g(z)| ≤ 1, for all z ∈ D,

and equality holds at some point inside D implies |g(z)| ≡ 1
in D.

Schwarz’s Lemma can be used to prove the following
characterization of the Möbius group Aut(D):

Aut(D) = {cϕa : a ∈ D and c ∈ C with |c| = 1}.

In fact, we know from the above that cϕa ∈ Aut(D) if
a ∈ D and c ∈ C with |c| = 1. Suppose f ∈ Aut(D).
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Then there is a point a ∈ D such that f (a) = 0. Consider
F = f ◦ ϕ−1

a and G = ϕa ◦ f −1. Clearly F,G ∈ Aut(D) and
F(0) = G(0) = 0. Using Schwarz’s Lemma, we have

|F′(0)| ≤ 1 and |G′(0)| ≤ 1 .

On the other hand, (G ◦ F)(z) = z implies G′(0)F′(0) = 1.
Therefore we must have

|F′(0)| = 1 and |G′(0)| = 1 .

Hence, by Schwarz’s Lemma, ( f ◦ ϕ−1
a )(z) = F(z) = cz, or

equivalently f = cϕa.
Möbius group Aut(D) has some interesting properties. For

example, it easy easy to check that ϕ′a(z) = −
1−|a|2

1−az , and

1 − |ϕa(z)|2 = 1 −
∣∣∣∣∣ a − z
1 − az

∣∣∣∣∣2
=

(1 − |a|2)(1 − |z|2)
|1 − az|2

= |ϕ′a(z)|(1 − |z|2).

We have, therefore

|ϕ′(z)|
1 − |ϕ(z)|2

=
1

1 − |z|2
, ∀ϕ ∈ Aut(D). (0.1)

Bergman metric

Equation (0.1) suggests that the measure

ds =
|dz|

1 − |z|2

is invariant under the action of Aut(D). We refer this measure
as Möbius invariant.

The hyperbolic length of a rectifiable arc γ : [0, 1]→ D is
defined by

`(γ) =

∫ 1

0

2|γ′(t)|dt
1 − |γ(t)|2

.

The Bergman distance of two points z and w in D is defined
by

d(z,w) = inf{`(γ) : γ([0, 1]) ⊂ D, γ(0) = z and γ(1) = w}.

Clearly, the Bergman metric is Möbius invariant. Therefore

d(z,w) = d(0, ϕz(w))

= inf
∫ 1

0

2|γ′(t)|dt
1 − |γ(t)|2

= 2
∫ |ϕz(w)|

0

dr
1 − r2

= log
1 + |ϕz(w)|
1 − |ϕz(w)|

.

The Bergman metric is so called because it is derived
from the Bergman kernel (see, for example, (Krantz, 2001)).

In general, let Ω be a domain in Cn and KΩ(z,w) be the
Bergman kernel on Ω. Define a Hermitian metric by

gi j(z) =
∂2

∂zi∂z j
log KΩ(z, z), z ∈ Ω .

The length of a rectifiable arc γ : [0, 1]→ Ω is defined as

`(γ) =

∫ 1

0

√√√∑
i, j

gi j(γ(t))
∂γi(t)
∂t

∂γ j(t)
∂t

dt.

We will see later that the Bergman kernel for the unit disk
D is

KD(z,w) =
1

(1 − wz)2 .

Therefore

g(z) =
∂2

∂z∂z
log

1
1 − |z|2

=
1

(1 − |z|2)2 .

Bergman metric is also referred as Poincaré metric in view
of Cn = R2n. For example, the unit ball of Rn, the associated
metric tensor of the Poincaré metric is given by

ds2 = 4

∑
j dx2

j

(1 −
∑

j x2
j )

2
.

For fixed a ∈ D and t > 0, the Bergman disk of center a
and radius t is defined by

D(a, t) = {w ∈ D : d(w, a) < t} .

Since d(w, a) < t is equivalent to

|ϕa(w)| <
et − 1
et + 1

and ϕa is a Möbius transformation, we conclude that D(a, t)
is also a Euclidean disk. The Euclidean center and ra-
dius of D(a, t) can be easily calculated from the equation
|ϕa(w)| = et−1

et+1 . They are, respectively,

1 − r2

1 − |a|2r2 a and r
1 − |a|2

1 − |a|2r2

where r = et−1
et+1 .

For a set E in D, denote the normalized area of E by

|E| =
∫

E

dxdy
π

.

For t > 0, let r = et−1
et+1 . The following result is standard

(see, for example, (Zhu, 2007)).

• |D(a, t)| = r2 (1 − |a|2)2

(1 − |a|2r2)2 ;

• inf{|1 − az| : z ∈ D(a, t)} =
1 − |a|2

(1 − r|a|)2 ;
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• sup{|1 − az| : z ∈ D(a, t)} =
1 − |a|2

(1 + r|a|)2 ;

• There exists a constant C(t) such that∣∣∣∣∣ 1 − az
1 − aw

− 1
∣∣∣∣∣ ≤ C(t)d(z,w)

for all a, z,w ∈ D and d(z,w) ≤ t.
We note that under the Bergman metric, the geodesics in

the unit disk D are circular arcs in D orthogonal to ∂D. If
these arcs are called lines, then the parallel postulate is false.
Therefore the Bergman metric on D provides a good model
for Lobachevsky geometry.

The following figure illustrates the Bergman disks D(a, t)
with t = 1/2, 1 and 2. It illustrates also geodesics passing
through a and 0 respectively.

δ-lattice in D

For given δ > 0, a sequence {z j} in D is called a δ-lattice in
the Bergman metric if d(zi, z j) ≥ δ/5 for i , j and {D(zk, δ)}
covers D, i.e.,

D =

∞⋃
j=1

D(z j, δ) .

It is not hard to see that there exists an integer Mδ > 0 such
that every point in D is covered by {D(zk, δ)} at most M times.

The following theorem, which is proved in (Coifman and
Rochberg, 1980) (see also (Zhu, 2007)), says that a δ-lattice
always exists.

Theorem 1. For any δ > 0, there exists a δ-lattice in D.

Mathematical induction can be employed to prove above
theorem. We provide here a constructive approach.

Let z0,0 = 0. For any integer k > 0, consider the Bergman
circle γk = {z ∈ D : d(z, 0) = kδ/5}. It is easy to compute

`(γk) =

∫ 1

0

2|γ′k(t)|dt
1 − |γk(t)|2

=
4πRk

1 − R2
k

.

Here Rk = ekδ/5−1
ekδ/5+1 .

Since the Bergman length of the circle γk is finite, there
are finite many points {zk, j : j = 0, 1, · · · , Jk} evenly spread

out on γk, such that the Bergman distance between any two
points next to each other is a constant which is in [δ/5, 2δ/5).

It is easy to see that for any integer k ≥ 0, the smallest
Bergman distance between points in {zk, j : j = 0, 1, · · · , Jk}

and points in {zk+1, j : j = 0, 1, · · · , Jk+1} is within [δ/5, 3δ/5).
Therefore it can be seen that the set of the points {zk, j : j =
0, 1, · · · , Jk; k = 0, 1, 2, · · · } is a δ-lattice.

Given a δ-lattice {z j}. There is an associated decomposi-
tion of unity as in the following theorem.

Theorem 2. For any δ-lattice {z j} in D, there are C∞(D)
functions ψ j with 0 ≤ ψ j(z) ≤ ψ(z j) = 1 and suppψ j ⊆

D(z j, δ), such that

∞∑
j=1

ψ j(z) ≡ 1 , for all z ∈ D .

In fact, pick any C∞(D) function ξ such that 0 ≤ ξ(z) ≤
ξ(0) = 1 and suppξ = D(0, δ). Let ξ j = ξ ◦ ϕz j . Clearly
suppξ j = D(z j, δ), ξ j ∈ C∞(D) and

∞∑
j=1

ξ j(z) ≤ Mδ, for all z ∈ D .

It is easy to see now that

ψ j =
ξ j∑
k ξk

, j = 1, 2, · · ·

is what needed.

Bergman spaces

For 0 < p < ∞, Bergman space Ap is the set of all analytic
functions f on D such that

‖ f ‖pp =

∫
D
| f (z)|pdA(z) < ∞ .

Here dA(z) = 1
π
dxdy. It is standard that P, the set of all

polynomials on D, is dense in Ap.
It is easy to see that for 1 ≤ p < ∞, Ap with norm ‖ · ‖p, is

a Banach space. Since for any z ∈ D, the point evaluation is
a bounded linear functional of Ap, there exists a function Kz
such that

f (z) =

∫
D

f (w)Kz(w)dA(w), ∀ f ∈ Ap .

The above formula is referred as the reproducing formula for
Bergman space Ap.

It can be shown that KD(w, z) = Kz(w), called the Bergman
kernel on D, has the expression

KD(w, z) =
1

(1 − zw)2 .
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Indeed, with KD(w, z) we can verify the Bergman reproduc-
ing formula for all f ∈ P in the following. Write f (z) =∑

j≥0 f jz j. Write

KD(w, z) =
1

(1 − zw)2 =
∑
k≥0

(k + 1)zkwk .

It is easy to check that∫
D

f (w)KD(w, z)dA(w) =
∑
j,k≥0

(k + 1) f jzk
∫
D

w jwkdA(w)

=
∑
j≥0

( j + 1) f jz j
∫
D
|w|2 jdA(w)

=
∑
j≥0

f jz j

= f (z) .

Here are some useful properties (see, for example, (Zhu,
2007)).
• If ϕ ∈ Aut(D), then

KD(z,w) = ϕ′(z)KD(ϕ(z), ϕ(w))ϕ′(w);

• For 1 < p < ∞, the integral operator∫
D

f (w)|KD(z,w)|dA(w) =

∫
D

f (w)
|1 − wz|2

dA(w)

is bounded on Lp(D, dA).

Atomic decomposition

In this section, C and c denote positive constants that may
change from one step to the next. We say that two positive
functions a and b are equivalent, denoted by a � b, if there
are two positive constants c and C such that ca ≤ b ≤ Ca.

The following lemma plays an important role in the estab-
lishment of the atomic decomposition.

Schur’s Lemma. Suppose 1 < p < ∞ and p′ =
p

p−1 . Sup-
pose Q(z,w) is a positive function on D × D. If there is a
positive function g on D, such that∫

D
Q(z,w)gp′ (w)dA(w) ≤ Cgp′ (z)

and ∫
D

Q(w, z)gp(w)dA(w) ≤ Cgp(z)

hold for all z ∈ D, then the linear map given by

f 7→
∫
D

Q(z,w) f (w)dA(w)

is a bounded map on Lp(D, dA).

Suppose α > −1. With the Taylor series

1
(1 − x)α+2 =

∞∑
n=0

Γ(n + α + 2)
Γ(n + 1)Γ(α + 2)

xn ,

it is easy to check that for f ∈ P, the following reproducing
formula holds:

f (z) = (α + 1)
∫
D

f (w)
(1 − wz)α+2 (1 − |w|2)αdA(w) .

In fact, the kernel α+1
(1−wz)α+2 is the Bergman kernel for the

weighted Bergman space Aα
p, which is the completion of P

in Lp(D, (1 − |z|2)αdA(z)). Moreover, by Schur’s lemma, one
can prove that the map

f 7→ (α + 1)
∫
D

f (w)
|1 − wz|α+2 (1 − |w|2)αdA(w)

is bounded on Lp(D, (1 − |z|2)αdA(z)) for 1 < p < ∞.
The following theorem is proved in (Coifman and

Rochberg, 1980) under several variables setting. One can
refer to (Rochberg, 1985) also.

Atomic Decomposition of Aα
p. Suppose 0 < p < ∞, α > −1

and b > max
(
1, 1

p

)
+ α+1

p . There exists an δ0 > 0, such that
for 0 < δ < δ0 and any δ-lattice {z j} in D, we have
(a) If f ∈ Aα

p, then

f (z) =
∑

j

λ j
(1 − |z j|

2)b− 2+α
p

(1 − z jz)b (0.2)

and ∥∥∥{λ j}
∥∥∥
`p ≤ C‖ f ‖Aαp .

(b) For any {λ j} ∈ `
p, the function f , defined by (0.2), is in

Aα
p and

‖ f ‖Aαp ≤ C
∥∥∥{λ j}

∥∥∥
`p .

Proof sketch: The part (b) of the theorem is a consequence
of Schur’s lemma. For part (a), we consider the case of p > 1
only.

Starting with the reproducing formula and using the de-
composition of unity, we have

f (z) = (b − 1)
∫
D

f (w)(1 − |w|2)b−2

(1 − wz)b dA(w)

= (b − 1)
∑

j

∫
D(z j,δ)

f (w)(1 − |w|2)b−2

(1 − wz)b ψ j(w)dA(w) .

For the integration over the disk D(z j, δ) above, if we replace

the function f (w)(1−|w|2)b−2

(1−wz)b by f (z j)(1−|z j |
2)b−2

(1−z jz)b , we obtain the fol-
lowing approximation for f :

A( f )(z) =
∑

j

c j
f (z j)(1 − |z j|

2)b−2

(1 − z jz)b
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where
c j = (b − 1)

∫
D(z j,δ)

ψ j(w)dA(w)

≤ c|D(z j, δ)| � (1 − |z j|
2)2, j = 1, 2, · · · .

Denote Λ( f ) = {λ j( f )}, with λ j( f ) = c j(1 −
|z j|

2)
2+α

p −2 f (z j) . We can see that the linear operator Λ is
bounded from Aα

p to `p. Indeed, since the mean value prop-
erty for analytic functions implies

| f (z j)|p ≤
c

|D(z j, δ)|

∫
D(z j,δ)

| f (w)|pdA(w),

we have

‖Λ( f )‖p`p ≤ c
∑

J

(1 − |z j|
2)2+α| f (z j)|p

≤ c
∑

j

∫
D(z j,δ)

| f (w)|p(1 − |w|2)αdA(w)

≤ cMδ‖ f ‖Aαp .

We can write

A( f )(z) =
∑

j

λ j( f )
(1 − |z j|

2)b− 2+α
p

(1 − z jz)b .

Let’s look at the error of the approximation of f by A( f ).

| f (z) − A( f )(z)|

≤ c
∑

j

∫
D(z j,δ)

∣∣∣∣∣∣ f (w)(1 − |w|2)b−2

(1 − wz)b −
f (z j)(1 − |z j|

2)b−2

(1 − z jz)b

∣∣∣∣∣∣ψ j(w)dA(w)

≤ c
∑

j

1
|1 − z jz|b

∫
D(z j,δ)

| f (w) − f (z j)|(1 − |w|2)b−2dA(w)

+c
∑

j

∫
D(z j,δ)

| f (w)|

∣∣∣∣∣∣ (1 − |w|2)b−2

(1 − wz)b −
(1 − |z j|

2)b−2

(1 − z jz)b

∣∣∣∣∣∣ dA(w)

By properties of Bergman kernel, properties of Bergman
spaces and Schur’s Lemma, we can prove, from the above
estimate, that

‖ f − A( f )‖Aαp ≤ Cδ‖ f ‖Aαp , ∀ f ∈ Aα
p .

It is clear that we can choose δ > 0 small, say δ < 1
2C , so

that the linear operator A is invertible and that

A−1 =

∞∑
n=0

(Id − A)n

is bounded (on Aα
p).

For any f ∈ Aα
p, we have A−1( f ) ∈ Aα

p and therefore
Λ(A−1( f )) ∈ `p. We can write

f (z) = A
(
A−1( f )

)
(z) =

∑
j

λ j

(
A−1( f )

) (1 − |z j|
2)b− 2+α

p

(1 − z jz)b .

This is the part (a) of the atomic decomposition theorem.
Atomic decomposition can be established for many ana-

lytic function spaces, such as
• Besov spaces Bp (p > 1):∫

D
| f ′(z)|p(1 − |z|2)p−2dA(z) < ∞

• Bloch space B:

sup
z∈D
| f ′(z)|(1 − |z|2) < ∞

• BMOA or Qs (0 < s ≤ 1) spaces (BMOA= Q1):

‖ f ‖2Qs
= sup

a∈D

∫
D
| f ′(z)|2

(
log

1
|ϕa(z)|

)s

dA(z) < ∞

Atomic decomposition for BMOA was established by
Rochberg and Semmes (1986). As a generalization of
BMOA space, Qs space was first introduced in (Aulaskari
and Lappan, 1994; Aulaskari et al., 1995) (see also (Xiao,
2001)). It was proved in (Wu and Xie, 2003) that Qs space is
a potential space of Morry space.

To end this paper we introduce the following atomic de-
composition theorem for Qs spaces which was proved in (Wu
and Xie, 2002).

The Carleson square in D, based on an arc I, is defined by

S (I) = {z ∈ D : |z| > 1 − |I| and z/ |z| ∈ I} .

Carleson square in D based on an arc I

Atomic Decomposition of Qs. Suppose 0 < s ≤ 1 and
b > 1+s

2 . There exists an δ0 > 0, such that for 0 < δ < δ0 and
any δ-lattice {z j} in D, we have
(a) If f ∈ Qs, then

f (z) =
∑

j

λ j
(1 − |z j|

2)b− s
2

(1 − z jz)b (0.3)

and

sup
I⊂∂D

∑
j:z j∈S (I) |λ j|

2

|I|s
≤ C‖ f ‖Qs .

(b) For any {λ j} with supI⊂∂D

∑
j:z j∈S (I) |λ j |

2

|I|s < ∞, the function
f , defined by (0.3), is in Qs and

‖ f ‖Qs ≤ C sup
I⊂∂D

∑
j:z j∈S (I) |λ j|

2

|I|s
.

Above theorem can be proved by establishing the estimate

‖ f − A( f )‖Qs ≤ Cδ‖ f ‖Qs , ∀ f ∈ Qs .

Schur’s type estimate and Carleson measures are needed, and
we refer the reader to (Wu and Xie, 2002) for details.
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