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Introduction

The topic announced in the title is a spinoff of a problem
recently solved, more or less, in (Foster and Johnson, 2012):
Given an alphabet S = {s1, . . . , sm}, an integer k > 1, and a
k-dimensional array [ f ] = [ f (i1, . . . , ik); 1 ≤ i1, . . . , ik ≤ m]
of non-negative numbers, under what conditions on the array
does there exist a “statistically stable source” producing text
over S (a hypothetically endless stream of letters in S ) such
that whenever 1 ≤ i1, . . . , ik ≤ m, f (i1, . . . , ik) is the relative
frequency of si1 . . . sik among blocks of k consecutive letters
in the source text; in other words, f (i1, . . . , ik) is the proba-
bility that a block of k consecutive letters chosen at random
from the source text will be si1 . . . sik .

From elementary probability comes a necessary condition
on [ f ] for the existence of such a source, sometimes called
the consistency condition: for any i1, . . . , ik−1 ∈ {1, . . . ,m},

m∑
i=1

f (i, i1, . . . , ik−1) =

m∑
j=1

f (i1, . . . , ik−1, j)

The common sum is the relative frequency of si1 . . . sik−1

among blocks of k−1 consecutive integers in the source text.
In the case k = 2, therefore, the array [ f (i, j)] is an m × m

matrix, which, if it is to be the matrix of relative frequen-
cies of the “digrams” sis j in the text written by some statisti-
cally stable text-writing machine, enjoys the property that,
for each j ∈ 1, . . . ,m, the sum down the jth column of
[ f (i, j)] is equal to the sum across the jth row; that common
sum will be the relative frequency of the single letter s j in
the text, if such a text exists. There are other requirements
on [ f ] for the existence of a statistically stable source over
S : the sum of the entries of [ f ] must be 1, and the matrix
cannot be permutation-equivalent to a diagonal block matrix,
but evidently these are not difficult to achieve.

The main problem in generating matrices of relative di-
gram frequencies is in getting the corresponding row and col-
umn sums equal; as an additional complication, it would be
useful to get those sums equal to pre-specified values, the
relative frequencies of the single letters.

During the 2011 Auburn University math REU one of
the co-authors of (Hankerson et al., 2003), noting that it
was sometimes desirable to have a good supply of non-
symmetric digram-relative-frequency matrices for pedagog-
ical purposes, tossed to the participants the vague problem

of finding ways of generating such matrices. This paper is a
response to that challenge.

Definitions and results

We will say a square matrix is consistent if all of its en-
tries are non-negative and, for each i, the sum of the ith row is
equal the sum of the ith column. We will say two n×m matri-
ces, A = [ai j] and B = [bi j], correspond if

∑m
j=1 ai j =

∑m
j=1 bi j

for 1 ≤ i ≤ n and
∑n

i=1 ai j =
∑n

i=1 bi j for 1 ≤ j ≤ m.
A 4-point transformation matrix is a matrix with row and

column sums all equal to zero and with exactly 4 non-zero
entries, at positions (i1, j1), (i2, j2), (i2, j1), (i1, j2), for some
i1 , i2 and j1 , j2. That is, a 4-point transformation matrix
is a matrix of zeroes, except for a 2 × 2 sub-matrix[

λ −λ
−λ λ

]
An example of a 3× 3 4-point transformation matrix is given
below.  λ 0 −λ

−λ 0 λ
0 0 0


Note that adding a 4-point transformation matrix to another
matrix A results in a matrix with the same row and column
sums as A.

Theorem. If A , B are n × m non-negative corresponding
matrices, then there exists a finite sequence T1, . . . ,Tk of 4-
point transformation matrices such that B = A +

∑k
i=1 Ti and

A +
∑ j

i=1 T j has non-negative entries for each j ∈ {1, . . . , k}.

Corollary. Suppose that d1, . . . , dm > 0. Every non-negative
consistent matrix with row (and therefore column) sums
d1, . . . , dm can be obtained from the diagonal matrix

d1 0
. . .

0 dm


by successively adding m × m 4-point transformation matri-
ces, chosen so that the result at each stage is non-negative.
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So, for instance, if a professor teaching a course on, say,
data compression wanted for problems and examples a sup-
ply of matrices of relative digram frequencies for source text
over a 3-element alphabet in which the single letters were to
have relative frequencies .5, .3, .2, the professor could simply
start with the matrix .5 0 0

0 .3 0
0 0 .2


and add 4-point transformation matrices chosen to give non-
negative results, discarding block diagonal matrices such as.4 .1 0

.1 .2 0
0 0 .2


as invalid, and symmetric matrices as uninteresting. For in-
stance, it is possible to go from.5 0 0

0 .3 0
0 0 .2


to the relatively interesting matrix .3 .1 .1

.15 .1 .05

.05 .1 .05


in just three steps by adding 4-point transformation matri-
ces. Incidentally, it is shown in (Foster and Johnson, 2012)
that there is a machine that will produce statistically stable
text over a 3-letter alphabet exhibiting the relative digram
frequencies in that resultant matrix.

The corollary obviously follows from the theorem. The
theorem will be proven in the next section. Although it has
no obvious practical application, it is worth noting that an
efficient algorithm can be extracted from the proof for pro-
ducing T1, . . . ,Tk, given A and B as in the statement of the
theorem.

Proofs and intermediate results
Lemma. Suppose that c1, . . . , ck, d1, . . . , dt ≥ 0, and
k∑

i=0
ci,

t∑
j=0

d j ≥ e > 0. Then there exist λ1, . . . , λr ≥ 0 and

partitions C1, . . . ,Ck and D1, . . . ,Dt of {1, . . . , r} such that:
1. for each i ∈ {1, . . . , k},

∑
u∈Ci

λu ≤ ci

2. for each j ∈ {1, . . . , t},
∑

v∈D j

λv ≤ d j

3.
r∑

i=1
λi = e

Proof. We will go by induction on k + t. If k = t = 1 then
c1, d1 ≥ e: take r = 1, λ1 = e, and C1 = D1 = {1}.

Now suppose that k + t > 2. If min(c1, d1) ≥ e, take
r = 1, λ1 = e,C1 = D1 = {1}, and Ci = D j = ∅ for all

i, j > 1. If, without loss of generality, c1 = min(c1, d1) < e
take λ1 = c1 and set C1 = {1}. Applying the induction hy-
pothesis to the sequences c2, . . . , ck and d1 − c1, d2, . . . , dt,
with e replaced by e − c1, we obtain λ2, . . . , λr ≥ 0 and
partitions C2, . . . ,Ck and D′1, . . . ,D

′
t of {2, . . . , r} such that

(i) for each i ∈ {2, . . . , k},
∑

u∈Ci
λu ≤ ci; (ii) for each

j ∈ {2, . . . , t},
∑

v∈D′j
λv ≤ d j and

∑
v∈D′1

λv ≤ d1 − c1; and
(iii)
∑r

i=2 λi = e − c1.
Take D1 = D′1 ∪ {1}, and D j = D′j for j ≥ 2. It is straight-

forward to see that λ1, λ2, . . . , λr and the partitions C1, . . . ,Ck
and D1, . . . ,Dt of {1, . . . , r} satisfy the requirements (i), (ii),
and (iii). �

Proof of Theorem. Let A and B be as hypothesized in the
theorem. Note that if either m = 1 or n = 1, and A and B are
corresponding, then A = B. So m, n ≥ 2. We will go first by
induction on n, and then by induction on m.

If m = n = 2 then it is easy to see that T = A − B is a
4-point transformation matrix. Now suppose that n > m = 2.
If any row of A were equal to the corresponding row of B, we
could replace A and B by A′ and B′, (n − 1) × 2 correspond-
ing matrices, A , B, and invoke the induction hypothesis to
obtain (n − 1) × 2 4-point transformation matrices T ′1, . . . ,T

′
k

satisfying the conclusion of the theorem with respect to A′
and B′. Then forming T1, . . . ,Tk by inserting a zero row into
each of T ′1, . . . ,T

′
k, at the row number equal to that of the

row removed before the inductive step, will give a sequence
satisfying the conclusion of the theorem with respect to A
and B. So we may suppose that [ai1, ai2] , [bi1, bi2] for every
i = 1, . . . , n.

If we can find 4-point transformation matrices T1, . . . ,Ts

so that A +
∑ j

i=1 Ti is non-negative, 1 ≤ j ≤ s, and the last
row of A +

∑s
i=1 Ti is [bn1, bn2], then either A +

∑s
i=1 Ti = B

and we would be done with the induction on n, or, by the ar-
gument above, there would exist 4-point transformation ma-
trices Ts+1, . . . ,Tk such that T1, . . . ,Tk satisfy the conclusion
of the theorem with respect to A and B. We will show that
such T1, . . . ,Ts exist.

Without loss of generality, an1 < bn1. Keep in mind that
bn1 − an1 = an2 − bn2. Because

∑n
i=1(bi1 − ai1) = 0, we have

that bn1 − an1 =
∑n−1

i=1 (ai1 − bi1). Let P = {i ∈ {1, . . . , n − 1} |
ai1 − bi1 > 0}. For purposes of simplifying the discussion
let P = {1, . . . , s}. Then 0 < bn1 − an1 ≤

∑s
i=1(ai1 − bi1).

Therefore, there exist λ1, . . . , λs, 0 < λi ≤ ai1 − bi1, such that∑s
i=1 λi = bn1 − an1. Let Ti be the 4-point transformation

matrix with λi in positions (n, 1) and (i, 2), and −λi in posi-
tions (i, 1) and (n, 2). Observing that ai1 − λi ≥ bi1 ≥ 0 and
that for each j ∈ {1, . . . , s}, an2 −

∑ j
i=1 λi ≥ an2 −

∑s
i=1 λi =

an2 − (bn1 −an1) = an2 − (an2 −bn2) = bn2 ≥ 0, we see that the
list T1, . . . ,Ts has the desired properties. Thus, the theorem
holds if m = 2, for all n.

Now we suppose that m > 2, and that the conclusion holds
for m replaced by m − 1, for all n. If the last columns of A
and B are the same, then we may delete them, invoke the
induction hypothesis, and we are done. Therefore, if we can
go from A, through the non-negative matrices, by adding 4-
point transformation matrices, to a matrix whose last column
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agrees with the last column of B at at least one more place
than does the last column of A, then we are done, because
we can then repeat the procedure until the last column of the
resultant matrix is the same as the last column of B.

Since
∑n

i=1 aim =
∑n

i=1 bim, if the last columns of A and B
are not identical, then aim < bim for some i. To simplify the
discussion, assume anm < bnm. Let P = { j ∈ {1, . . . ,m − 1} |
an j − bn j > 0} and let Q = {i ∈ {1, . . . , n − 1} | aim − bim > 0}.
To simplify discussion, we may assume that P = {1, . . . , k}
and Q = {1, . . . , t}.

By the argument by which it was shown that 0 < bn1 −

an1 ≤
∑

i∈P(ai1 − bi1) in the m = 2 case, we have that
0 < bnm − anm ≤

∑
j∈P(an j − bn j),

∑
i∈Q(aim − bim). Thus,

the hypothesis of the Lemma holds, with e = bnm − anm, c j =
an j−bn j, j ∈ P, di = aim−bim, i ∈ Q. By the Lemma, there ex-
ist λ1, . . . , λr ≥ 0 and partitions C1, . . . ,Ck and D1, . . . ,Dt of
{1, . . . , r} such that

∑r
i=1 λi = bnm − anm,

∑
u∈C j

λu ≤ an j − bn j,
for j = 1, . . . , k, and

∑
v∈Di

λv ≤ aim − bim, for i = 1, . . . , t.
For each s ∈ {1, . . . , r} such that λs > 0 let Ts be the 4-

point transformation matrix with λs in positions (n,m) and
(i, j), and −λs in positions (n, j) and (i,m), where i and j
are such that s ∈ C j ∩ Di. It is straightforward to ver-
ify that A+(any sum of the Ts) is non-negative, and A′ =
A +
∑
{s|λs>0} Ts has bnm in the (n,m) position. Furthermore,

the only positions besides the (n,m) position where A′ dif-
fers from A in the last column are the positions (i,m) such
that aim − bim > 0. That is, A′ differs from A in the last
column only at places where B differs from A, so A′ agrees

with B at least at one more position than does A, the position
(n,m). �

This is one of those proofs that is easy to “see”, but diffi-
cult to write, and probably even more difficult to read. How-
ever, if the reader has “seen” the proof through the tedium, it
is hoped that the reader will agree that the theorem is just the
case k = 2 of a more general theorem about k-dimensional
matrices, or arrays, of non-negative real numbers. In the gen-
eral case, the role of the 4-point transformation matrices is
played by 2k-point transformation arrays, which are arrays
in which every line sum is zero, and the entries are all zero
except in a 2 × 2 × . . . × 2 subarray, in which every entry is
either λ or −λ for some λ , 0.
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