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Introduction
Series of the form

∑ 1
n and

∑
(−1)n−1 1

n are known as har-
monic and alternating harmonic series, respectively. An in-
teresting property of these series is that the former diverges
while the latter converges. In general, then given a sequence
{an} of 1s and −1s, it is interesting to investigate the con-
vergence of the corresponding series

∑
an/n. It turns out that

in some cases the corresponding series converges while in
others diverges. Feist and Naimi in their paper ’Almost Al-
ternating Harmonic Series’ (See (Feist and Naimi, 2004)) in-
vestigated the properties of such series, where they came up
with necessary and sufficient conditions on a sequence {an} of
real numbers, for which the corresponding series converges.

In this paper, we will first show that similar necessary and
sufficient conditions on an arbitrary sequence {an} of real
numbers result in a convergent series of the form

∑
an/bn,

where {bn} is any, non-void, convergent sequence of real
numbers. Then, we will continue our discussion for se-
quences and series of real functions on some subset E ∈ R.
Namely, we will demonstrate certain conditions under which
similar statements as those presented for sequences of real
numbers hold in this case as well.

Some Technical Background
Definition 1. Let {an} be a sequence of 1s and −1s. Let Pn
denote the number of 1s and Qn the number of −1s among
the fist n terms. We say that {an} is almost alternating if
Pn/Qn → 1 as n→ ∞.

Definition 2. Let {an} be a sequence of 1s and −1s. Define
the nth partial average of {an} to be

An =
1
n

n∑
i=1

ai.

We say that {an} is almost alternating if An → 0 as n→ ∞.

Note: The nth partial average An can be defined in exactly
the same way for any sequence of real numbers as well.

Remark: We invite the readers to show that Definition 1
and Definition 2 are equivalent!

Definition 3. Let {an} be an almost alternating sequence.
Then, we say that

∑
an/n is an almost alternating harmonic

series.

Theorem 4. Given two sequences {an} and {bn}, put S k =∑k
n=1 an if n ≥ 0 and S −1 = 0. Then if 0 ≤ p ≤ q, we have

q∑
n=p

anbn =

q−1∑
n=p

S n(bn − bn+1) + S qbq − S p−1bp. (1)

In particular, if p = 1 and q = k the above formula be-
comes

k∑
n=1

anbn = S kbk+1 +

k∑
n=1

S n(bn − bn+1). (2)

This is known as summation by parts and is extensively
used in investigating the nature of series of the form

∑
anbn.

Preliminaries
Below we state some of the results by Naimi and Feist,

relevant to our topic.

Necessary and Sufficient Conditions for Conver-
gence
Theorem 5. Let {an} be a sequence of real numbers. If∑∞

n=1 an/n converges, then limn→∞ An = 0.

Theorem 6. Let {an} be a sequence of real numbers. Then∑∞
n=1 an/n converges if and only if limn→∞ An = 0 and∑∞
n=1 An/n converges.

Lemma 7. Let {xn} be a sequence of real numbers such that
n|xn+1 − xn| is bounded above. If

∑∞
n=1 xn/n converges, then

limn→∞ xn = 0.

Now, I state the main theorem given by Naimi and Feist.

Theorem 8. Let {an} be a sequence of 1s and −1s. Then∑∞
n=1 an/n converges if and only if

∑∞
n=1 An/n converges.

Main Results
The first result that we state is a variation of one of the

results given by Naimi and Feist. In their paper they give
necessary and sufficient conditions on a sequence of 1s and
−1s for which the corresponding series

∑
an/n converges.

Here, we will provide a necessary and sufficient condition on
a larger/different class of sequences {an} for which the cor-
responding series

∑
an/n converges. We prove the following

lemma first.
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Lemma 9. Let {an} be a sequence of real numbers such that
the partial sums, S n, of

∑
an form a bounded sequence. then

n|An+1 − An| is bounded above.

Proof. Let S n =
∑n

i=1 ai. Since the partial sums S n form a
bounded sequence, there exists some number M > 0 such
that

|S n| ≤ M, for all n ∈ N.

Then

|S n+1 − 2S n| ≤ 3M. (3)

Now consider

|An+1 − An| =

∣∣∣∣∣An + an+1

n + 1
− An

∣∣∣∣∣
=

∣∣∣∣∣an+1 − nAn

n + 1

∣∣∣∣∣
=

1
n + 1

|an+1 − S n|

≤
1
n
|S n+1 − 2S n|

≤
3M
n
,

where we have used (3) in the last inequality. The state-
ment of the lemma now follows.

�

Theorem 10. Let {an} be a sequence of real numbers such
that the partial sums S n of

∑
an form a bounded sequence.

Then
∑

an/n converges if and only if
∑

An/n converges.

Proof. The proof follows readily from Lemma 9, Lemma 7
and Theorem 6. �

A Necessary Condition for Convergence

Theorem 11. Let {an} be a sequence of real numbers and
{bn} be a convergent sequence of real numbers such that
bn , 0 for all n. If

∑
an/bn converges then limn→∞ An = 0.

Proof. Let

S k =

k∑
n=1

an

bn
, and Ak =

1
k

k∑
n=1

an.

Applying Theorem 4 as given in equation (2), we get

k∑
n=1

an =

k∑
n=1

an

bn
bn

=S kbk+1 +

k∑
n=1

S n(bn − bn+1).

Then

Ak =
bk+1

k
S k +

1
k

k∑
n=1

S n(bn − bn+1).

Letting un = bn − bn+1 in the above equation, we get

Ak =
bk+1

k
S k +

1
k

k∑
n=1

S nun. (4)

Now, by hypothesis
∑

an/bn converges, say to S . Then,
S k → S as k → ∞. Also, since {bk} converges to some num-
ber b, {uk} will converge to 0 as k → ∞. Thus

bk+1

k
S k → 0, as k → ∞,

and
1
k

k∑
n=1

S nun → 0, as k → ∞. (5)

For a proof of (5) see (Rankin, 1963, p. 50). Therefore
Ak → 0 as k → ∞. This concludes the proof!

�

We notice that the contrapositive of the above theorem is
the most useful when solving specific problems, and for this
reason we will state it in the form of a corollary. This pro-
vides us with another divergence test for these types of series.

Corollary 12. Let {an} be a sequence of real numbers and
{bn} be a convergent sequence of real numbers, such that
bn , 0 for all n. If limn→∞ An , 0, then the series

∑
an/bn

diverges.

Sequences and Series of Functions

In this section we will show that similar statements as
those given in some of the previous theorems hold for se-
quences { fn} of real functions as well.

A Necessary Condition for Convergence. Let us first con-
sider an example that will serve as a motivation for the theo-
rem to come.

Example 13. Let { fn} be a sequence of real functions given
by

fn(x) = nx(1 − x2)n (0 ≤ x ≤ 1, n = 1, 2, 3, ...). (6)

Let

An(x) =
1
n

n∑
i=1

fi(x),

be the nth partial average function of the sequence { fn}. Con-
sider the series

∞∑
n=1

fn(x)
n

= x
∞∑

n=1

(1 − x2)n =
1 − x2

x
= f (x).
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So the series on the LHS converges point-wise to the
function f (x) = 1−x2

x on (0, 1). Next, we wil show that
limn→∞ An(x) ≡ 0. Applying summation by parts we get

An(x) =
x
n

n∑
i=1

i(1 − x2)i

=
x
n

 n∑
i=1

(1 − x2)i(n + 1) −
n∑

i=1

 i∑
k=1

(1 − x2)k


=

1 − x2

x

[
n + 1

n
(1 − (1 − x2)n) − 1 +

(
1
n
−

(1 − x2)n)
n

)]
.

From the above expression, we see that An(x)→ 0 as n→ ∞
for all x ∈ (0, 1).

Lemma 14. Let { fn(x)} be a sequence of uniformly bounded
real functions converging uniformly to a function f on E ⊂
R. Let {gn(x)} be another sequence of real functions whose
nth term is given by:

gn(x) =
1
n

n∑
i=1

fi(x).

Then {gn(x)} converges uniformly to f on E.

Proof. Since { fn} converges uniformly to f , given an ε > 0,
there exists some N such that for all x ∈ E and n ≥ N we
have

| fn(x) − f (x)| < ε. (7)

On the other hand, since { fn} are uniformly bounded on E,
there exists a number M such that

| fn(x)| < M (x ∈ E, n = 1, 2, 3, ...). (8)

Now consider

|gn(x) − f (x)| =

∣∣∣∣∣∣∣1n
n∑

i=1

fi(x) − f (x)

∣∣∣∣∣∣∣
=

1
n

∣∣∣∣∣∣∣
n∑

i=1

fi(x) − n f (x)

∣∣∣∣∣∣∣
=

1
n

∣∣∣∣∣∣∣∣
N∑

i=1

[ fi(x) − f (x)] +

n∑
j=N+1

[ f j(x) − f (x)]

∣∣∣∣∣∣∣∣
≤

MN
n

+
ε

2
.

The last inequality follows from (7) and (8). In the above
expression, if we let X(ε) = max

{
N, 2MN

ε

}
, we obtain

|gn(x) − f (x)| < ε, for all n > X(ε),

as desired. �

Theorem 15. Let { fn(x)} be a sequence of uniformly
bounded real functions on E ⊂ R. If

∑∞
n=1 fn(x)/n converges

uniformly to a function f on E, then An(x) converges uni-
formly to 0 on E, where

An(x) =
1
n

n∑
i=1

fi(x).

Proof. Let S k(x) =
∑k

n=1 fn(x)/n. Applying summation by
parts we get:

k∑
n=1

fn(x) =

k∑
n=1

fn(x)
n

n

=S k(x)(k + 1) +

k∑
n=1

S n(x)(−1)

=(k + 1)S k(x) −
k∑

n=1

S n(x).

So, for the average function we have

Ak(x) =
k + 1

k
S k(x) −

1
k

k∑
n=1

S n(x). (9)

By the hypothesis of the theorem
∑∞

n=1 fn(x)/n converges
uniformly to some function f (x), so S k(x) converges uni-
formly to f (x). Thus, since {S k(x)} is a sequence of bounded
functions we have

k + 1
k

S k(x)→ f (x), uniformly on E as k → ∞.

Also, by Lemma 14 we have

1
k

k∑
n=1

S n(x)→ f (x), uniformly on E as k → ∞.

Therefore, by (9) , as k → ∞, Ak(x)→ 0, uniformly on E.
�

Again, notice that the contrapositive of this theorem is the
one that would be the most useful in solving problems in-
volving uniform convergence of series of this form.

A Necessary and Sufficient Condition for Convergence.
Before we state and prove the main theorem of this section,
and the last in this paper, we will give two convergence tests
applicable to series of functions.

Proposition 16. (Comparison Test for Series of Functions,
CTSF) Suppose

∑∞
n=1 fn(x) and

∑∞
n=1 gn(x) are two infinite

series of functions on E, with gn(x) ≥ 0, for all x ∈ E and
n = 1, 2, 3, ... .

(a) If | fn(x)| ≤ gn(x) for all x ∈ E and n ≥ No, where No is
some fixed integer, and if

∑
gn(x) converges uniformly on E,

then
∑

fn(x) converges uniformly on E as well;
(b) If fn(x) ≥ gn(x), for all x ∈ E and n ≥ No, and if∑
gn(x) diverges on E, then

∑
fn(x) diverges as well.



4 VALMIR BUCAJ

Proof. Since
∑

gn(x) converges uniformly on E, given ε > 0,
there exists some N ≥ No such that n ≥ m ≥ N implies

m∑
k=n

gk(x) ≤ ε,

by the Cauchy criterion for convergence. Then∣∣∣∣∣∣∣
m∑

k=n

fn(x)

∣∣∣∣∣∣∣ ≤
m∑

k=n

| fk(x)| ≤
m∑

k=n

gk(x) ≤ ε.

Therefore, by the Cauchy criterion for convergence,∑∞
n=1 fn(x) converges uniformly on E. This concludes the

proof of part (a). Part (b) is proved in a similar fashion. �

Proposition 17. (Limit Comparison Test for Sequences of
Functions, LCTSF). Suppose

∑∞
n=1 fn(x) and

∑∞
n=1 gn(x) are

two infinite series of functions on a set E, with gn(x) > 0,
and fn(x) > 0, for all x ∈ E and n = 1, 2, 3, ... . Let
Fn(x) = fn(x)/gn(x), for all x ∈ E, and suppose that Fn(x)
converges point-wise to a function h(x) on E.

If h(x) > 0 and is bounded on E, then
∑

fn(x) converges
uniformly on E if and only if

∑
gn(x) converges uniformly

on E.

Proof. Given ε = 1
2 sup{h(x)} = 1

2 M > 0, for every x ∈ E
there exists some N such that n ≥ N implies∣∣∣∣∣ fn(x)

gn(x)
− h(x)

∣∣∣∣∣ ≤ M
2
.

Then
M
2

gn(x) ≤ fn(x) ≤
3M
2

gn(x). (10)

Then, the statement of the proposition follows by Proposition
16 and the expression in (10). �

Remark: Notice that if E is compact in the above propo-
sition, then the requirement that h(x) be bounded on E is
redundant.

Theorem 18. Let { fn(x)} be a sequence of uniformly
bounded positive real functions on E ⊂ R. Then,∑∞

n=1 fn(x)/n converges uniformly to a function f (x) on E if
and only if limn→∞ An(x) = 0 and

∑∞
n=1 An(x)/n converges

uniformly to some function g(x) on E.

Proof. Let S k(x) =
∑k

n=1 fn(x), then S k(x) = kAk(x). Apply-
ing summation by parts we get

k∑
n=1

fn(x)
n

=
k

k + 1
Ak(x) +

k∑
n=1

An(x)
n + 1

. (11)

First, notice that since {Ak(x)} is a sequence of bounded func-
tions, k

k+1 Ak(x) converges uniformly to 0 on E if and only if
Ak(x) converges uniformly to 0 on E, as k → ∞. Also, by
Proposition 17,

∑k
n=1

An(x)
n+1 converges uniformly to some func-

tion f (x) on E if and only if
∑k

n=1
An(x)

n converges uniformly
to f (x) on E. The conclusion of the theorem now follows
readily from Theorem 15 and the relation in (11).

�
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