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The fact that the sequence of functions (1 + z
n )n is locally bounded in C is enough to prove that

the sequence converges to a function that equals its own derivative. This limit can be taken as
the definition of the complex exponential, and properties of the real exponential and trigono-
metric functions can easily be derived. This article is a hybrid of pure mathematical theory and
mathematical pedagogy. The theory comes in proving that the limit mentioned above exists
using some sophisticated techniques in the theory of functions. The pedagogy comes from the
fact that except for the justification of the limit, this can serve as a satisfying introduction to
the calculus properties of exponential and trigonometric functions in a first semester calculus
course.

In a typical first semester calculus course students will see
that e = limn→∞(1 + 1

n )n. In fact, for every complex number
z,

ez = lim
n→∞

(
1 +

z
n

)n
;

see (Conway, 1973, Lemma 7.19 in Chapter 7). However
both of these results follow from previously derived proper-
ties of exponential and logarithm functions. A typical proof
of the first uses L’Hopital’s rule and the second involves
some careful estimates using the the Taylor expansion of
log(1 + z).

Independently of a previously defined exponential or log-
arithm function, this article starts by showing that the above
limit exists and then takes it as the definition of the com-
plex exponential. Using some complex analysis, which can
be justified independently of the elementary transcendental
functions, the basic properties of the exponential and trigono-
metric functions can be derived in a very straightforward
manner. In particular by doing the most obvious computa-
tion, this sequence converges to a function that equals its own
derivative. By first restricting to the real axis and then to the
imaginary axis, this becomes a very satisfying approach to
exponential and trigonometric functions in a first semester
calculus course.

Some Complex Background

In this section we state some of the standard definitions
and results from complex variable theory that will be needed,
being careful to not use anything that requires exponential or
trigonometric functions.

Let G be a domain in the complex plane; i.e. G is open
and connected. Recall that H(G) stands for the set of com-
plex valued functions defined on G that are differentiable on
G. (Here the “H” refers to the word “holomorphic”, which is
a standard term used for functions that are differentiable.)

We assume all the basic calculus properties of H(G) such
as the product, quotient, and chain rules. Basic properties of
contour integration are also required. The most important of
these is Cauchy’s Theorem that states that the integral of a

function in H(G) around a closed contour is zero provided
the contour and its interior are contained in G. (Those famil-
iar with the theory will recall that in a lot of arguments it is
enough to have this result in the special case of triangles.)

Cauchy’s Integral Formula, in the classical development,
depends on knowing the value of∫

σ

dz
z
,

whereσ is the unit circle. But the standard way of computing
this is to parametrize σ with the complex exponential. In the
spirit of this article, we want to avoid that computation until
after the complex exponential has been properly developed.

Instead, consider the value of∫
λ

dz
z
,

where λ represents the “unit square”, i.e. the square with
vertices (±1,±1).

A straightforward computation shows that this integral
equals κi where

κ = 4
∫ 1

−1

dt
1 + t2 .

Using standard arguments (for example, see (Howie,
2003, Section 7.1)), Cauchy’s Integral Formula becomes

f (a) =
1
κi

∫
γ

f (z)
z − a

dz,

where f ∈ H(G), γ is a simple closed contour in G with
interior in G, and a is in the interior of γ.

This formula implies Morera’s Theorem (Howie, 2003,
Theorem 7.8) which characterizes functions in H(G) as those
that are continuous on G and have zero contour integrals
over simple closed contours which are contained in G to-
gether with their interiors. As well, Liouville’s Theorem
(Howie, 2003, Theorem 7.9) holds, which states that the only
bounded functions in H(C) are the constant functions.
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Cauchy’s Integral Formula also implies that every func-
tion f ∈ H(G) is analytic in the sense that given a ∈ G, f (z)
is equal to its Taylor series centered at a for z in some disk
centered at a; (Howie, 2003, Theorem 7.16). This, in turn,
implies the Rigidity Principle which states that if f ∈ H(G)
is not identically zero, then its zeros are isolated; (Stalker,
1998, Theorem 18).

Finally, we need some results concerning sequences in
H(G). In (Conway, 1973, Chapter 7) it is shown that if a
sequence { fn} converges uniformly on compact subsets of G
to a function f , then f ∈ H(G) and for every positive inte-
ger j, { f ( j)

n } converges uniformly on compact subsets to f ( j).
This is simply an application of Morera’s Theorem and the
Cauchy Integral Formula. This is a very powerful result that
is not true in real variables. For example, on (−1, 1) there
is a sequence of polynomials that converge uniformly to the
absolute value function which fails to be differentiable at 0.

A combination of the Arzela-Ascoli Theorem (Conway,
1973, Theorem 1.23 of Chapter 7) and the Cauchy Integral
Formula is used to prove Montel’s Theorem (Conway, 1973,
Theorem 2.9 of Chapter 7), which states that if a family of
functions F ⊂ H(G) is uniformly bounded on compact sub-
sets of G (i.e. F is locally bounded), then every sequence of
functions in F has a subsequence that converges uniformly
on compact subsets of G; i.e. F is a normal family.

Exponential Function
We are now ready to construct our function. First ob-

serve that there can be at most one function f ∈ H(C) so
that f (0) = 1 and f ′ = f . Let f and g be two such func-
tions. Then it is easy to check that d

dz f (z)g(−z) = 0, and thus
f (z)g(−z) is a constant which must be 1 by evaluating the
product at 0. Applying this when g(z) = f (z) shows that any
function f with these properties is non-zero and f (−z) = 1

f (z)
for all z. Thus if two functions f and g satisfy these condi-
tions then f (z)

g(z) = 1 for all z, i.e. f = g.
Now, define fn(z) := (1 + z

n )n. If R > 0, and |z| ≤ R then

| fn(z)| ≤ fn(R) =

n∑
j=0

(
n
j

)
R j

n j ≤

n∑
j=0

R j

j!
≤

∞∑
j=0

R j

j!
< ∞.

This shows that the sequence { fn} is a locally bounded sub-
set of H(C). By Montel’s Theorem, every subsequence of
{ fn} has a further subsequence that converges uniformly on
compact subsets of C.

Let n1 < n2 < . . . and suppose that the subsequence { fnk }

converges uniformly on compact subsets of C to a function
f . By the discussion in the previous section, it follows that
f ∈ H(C) and { f ′nk

} converges uniformly on compact subsets
of C to f ′. Fix z. Then for k suitably large,

f ′nk
(z) = (1 +

z
nk

)nk−1 =
(1 + z

nk
)nk

(1 + z
nk

)
.

Thus { f ′nk
(z)} converges to f (z). As such, f ′ = f . It is also

clear that f (0) = 1.

This, combined with the uniqueness discussed above,
shows that there exists a function f ∈ H(C) so that f ′ = f ,
f (0) = 1, and with the property that every subsequence of
{ fn} has a further subsequence that converges to f uniformly
on compact subsets of C. Now H(C) is a complete metric
space so that convergence of a sequence in the metric space
is equivalent to uniform convergence on compact subsets of
C; see (Conway, 1973, Chapter 7). A standard metric space
argument implies that the entire sequence { fn} converges to
f uniformly on compact subsets of C. Thus

f (z) := lim
n→∞

(1 +
z
n

)n satisfies f ′ = f and f (0) = 1.

It is possible, using tedious estimates, to show directly that
{ fn} is a Cauchy sequence in H(C). That approach would
also work if one were only interested in this convergence for
real values of the variable. What makes the complex variable
approach so appealing is the ease with which it handles the
interchange of sequential limits and differentiation.

In a first semester calculus course one need only mention
that it can be shown that limn→∞(1 + x

n )n exists and that it is
justified to interchange the limit and differentiation. A purely
real variable proof would involve the tedious estimates men-
tioned above together with a general result about interchange
of limits and differentiation; for example see (Rudin, 1976,
Theorem 7.17). This is similar to the fact that in many second
semester calculus courses it is usually mentioned, without
proof, that power series can be differentiated term-by-term
inside the interval of convergence; for example see (Hughes-
Hallett et al., 2007, Section 10.3). Actually, the theory that
justifies the power series manipulations is exactly the theory
that justifies the limit used here.

Properties
We include here a brief discussion of the properties of the

function f defined at the end of the previous section. These
properties are mostly consequences of the fact that f ′ = f
and f (0) = 1. (Note: Most of this material could be used
in a first semester calculus course; the part that has to do
with purely imaginary numbers would probably be better for
a honors section or a semester project.) The treatment here is
somewhat similar to those given in (Rudin, 1987) and (Lang,
1983). The main difference is the way in which the function
is defined. None of what has been discussed in this article
requires power series, which is particularly nice when one
wants to introduce the exponential function in a first semester
calculus course. Also, we assume here the standard geomet-
ric definitions of the trigonometric functions as they relate
to the unit circle, and show that it is easy to relate the com-
plex exponential to these functions and thereby prove that the
trigonometric functions are differentiable.

Fix w. Then d
dz f (z + w) f (−z) = 0 and thus f (z + w) f (−z)

is a constant which must be f (w) by evaluating the product
at 0, i.e. f (z + w) = f (z) f (w). From this it is easy to check
that f (r) = f (1)r for r a rational number. Define

e := f (1) = lim
n→∞

(1 +
1
n

)n.
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Thus f is the unique analytic continuation to C of er, for r
rational, by the Rigidity Principle. This is where it makes
sense to denote f (z) by ez.

Restricting to real variables we have d
dx ex = ex > 0. Since

e > 1, limn→∞ en = ∞ and thus limn→∞ e−n = 0. It follows
that f : R→ (0,∞) is a homeomorphism.

The limit definition implies that ez̄ = ez. Thus if t is real,

eit = e−it, |eit |2 = eite−it = e0 = 1, and
d
dt

eit = ieit.

Write eit = c(t) + is(t). Thus c(−t) = c(t), s(−t) = −s(t),
c(t)2 + s(t)2 = 1, c′(t) = −s(t), and s′(t) = c(t). Also, c(0) = 1
and s(0) = 0.

Now, by Liouville’s Theorem, it follows that the range
of f (z) is dense in C, for otherwise there would be some
a so that 1

f (z)−a is bounded, and hence constant. In partic-
ular there exist real numbers α and β so that <eα+iβ < 0.
But eα+iβ = eα(c(β) + is(β)), and thus c(β) < 0. Since c is
an even function we may assume, without loss of generality,
that there exists t0 > 0, the smallest positive value at which c
vanishes.

Therefore on [0, t0], c is strictly decreasing and s is strictly
increasing. Thus s(t0) = 1. It follows that eit, 0 ≤ t ≤ t0,
traces the unit circle in the first quadrant from 1 to i. As a
result

π

2
=

∫ t0

0
|eiτ|dτ = t0.

More is true. If 0 ≤ t ≤ π
2 , the arc-length from 1 to eit is

given by ∫ t

0
|eiτ|dτ = t,

and from the standard geometric definitions we get c(t) =
cos t and s(t) = sin t, where t is measured in radians.

Now ei π2 = i. This implies that s(t) = c(t − π
2 ), c(π − t) =

−c(t), and c(2π − t) = c(t). This interprets graphically to say
that the graph of y = s(t) is the shift of the graph of y = c(t)
by π

2 , the graph of y = c(t) is anti-symmetric with respect
to the line t = π

2 , and the graph of y = c(t) is symmetric
with respect to the line t = π. It is also easy to check that
c(t + 2π) = c(t).

Since cos t has each of these properties, sin t = cos(t − π
2 ),

and c(t) = cos t for 0 ≤ t ≤ π
2 , then for all t, c(t) = cos t and

s(t) = sin t.
This simultaneously shows the differentiability of cos t

and sin t and their standard differentiation formulas.
Lettingσ be the unit circle and λ the unit square, Cauchy’s

Theorem implies

4i
∫ 1

−1

dt
1 + t2 =

∫
λ

dz
z

=

∫
σ

dz
z

= 2πi.

and thus ∫ 1

−1

dt
1 + t2 =

π

2
.

The following formula now holds:

ex+it = ex(cos t + i sin t).
The special case where x = 0 can be used to prove many
standard trigonometric identities.

Conclusion

We have seen that f (z) = limn→∞(1+ z
n )n is a function that

has the property that f ′(z) = f (z) and f (0) = 1. For a ratio-
nal number r, f (r) = er where e = f (1) = limn→∞(1 + 1

n )n.
The function is then denoted by ez. It is then shown that
ex+it = ex(cos t + i sin t).

These facts can be used to prove (even to first semester
calculus students) the differentiability of the exponential and
trigonometric functions, as well as to provide the basic dif-
ferentiation formulas.
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