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Zero-Markov information in topological games
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Univeristy of North Carolina at Charlotte

A 0-Markov strategy in a topological game considers only the round number and ignores all
moves by the opponent. The existence of a winning 0-Markov strategy in either of two games
due to Gruenhage characterizes hemicompactness in either locally compact or compactly gen-
erated spaces. However, there exists a non-compactly generated space for which there exists a
winning 0-Markov strategy in one game but not the other.

Introduction

The following two topological games were introduced by
Gary Gruenhage (1986).

Game 1. Let GruK,P (X) denote the Gruenhage com-
pact/point game with players K , P played on a topologi-
cal space X. During round n, K chooses a compact subset
Kn of X, followed by P choosing a point pn ∈ X such that
pn <
⋃

m≤n Km.
K wins the game if the collection {{pn} : n < ω} is locally

finite in the space, and P wins otherwise.

Game 2. Let GruK,L (X) denote the Gruenhage com-
pact/compact game with players K , L played on a topolog-
ical space X. This game proceeds analogously to GruK,P (X),
except the second player L chooses compact sets Ln missing⋃

m≤n Kn, and K wins if the collection {Ln : n < ω} is locally
finite.

A strategy for a game defines the move a player makes
each round as a function of the history of the game (previous
moves, the round number, etc.). A winning strategy defeats
every possible counterattack by the opponent. Note that a
winning strategy in GruK,L (X) is also a winning strategy in
GruK,P (X) since singletons are compact. In his paper, Gruen-
hage used these games to characterize several covering prop-
erties using the existence of various kinds of winning strate-
gies for K in the games. These results hold in the context of
locally compact spaces for which every point has a compact
neighborhood.

Definition 3. A space is paracompact if for every open cover
U there exists a locally-finite open refinement V of U also
covering the space.

Theorem 4. (Gruenhage, 1986, Theorem 5) The following
are equivalent for a locally compact space X:
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• X is paracompact

• K ↑ GruK,L (X). (K has a winning strategy for the
game.)

Definition 5. A space is metacompact if for every open cover
U there exists a point-finite open refinement V of U also
covering the space.

Theorem 6. (Gruenhage, 1986, Theorem 2) The following
are equivalent for a locally compact space X:

• X is metacompact

• K ↑
tact

GruK,P (X) (K has a tactical winning strat-

egy which only considers the most recent move of the
opponent each round)

Definition 7. A space is σ-metacompact if for every open
cover U there exist point-finite open refinements Vn of U
such that

⋃
n<ωVn also covers the space.

Theorem 8. (Gruenhage, 1986, Theorem 3) The following
are equivalent for a locally compact space X:

• X is σ-metacompact

• K ↑
mark

GruK,P (X) (K has a Markov winning strat-

egy which only considers the most recent move of the
opponent and the round number each round)

Tactical and Markov strategies are examples of limited in-
formation strategies. These may be generalized to k-tactical
and k-Markov strategies by allowing the player to use the k
most recent moves of the opponent; so 1-tactical strategies
are simply tactical strategies, and similar for Markov. Of
course, if k < l then a winning k-tactical (resp. Markov)
strategy is itself a winning l-tactical (resp. Markov) strategy.
Clontz (to appear) investigated (k+1)-tactical/Markov strate-
gies in GruK,P (X) and showed that even for a complexly con-
structed space they can often be improved to simply a tactical
strategy; it remains open if this is always the case.
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In this paper we investigate the applications of 0-Markov
strategies in both GruK,P (X) and GruK,L (X), which we will
call predetermined strategies as each move is determined
completely by the round number of the game and ignores all
moves of the opponent. It will be shown that for compactly
generated spaces that a predetermined winning strategy in
GruK,P (X) can be used to get a predetermined winning strat-
egy in GruK,L (X). However, there exists a non-compactly
generated space for which this does not work out.

Locally compact spaces and predetermined strategies

It is well-known (see for example Willard (2004)) that
amongst locally compact spaces the following properties are
equivalent.

Definition 9. A space X is Lindelöf if for every open cover
of X there exists a countable subcover.

Definition 10. A space X is σ-compact if X =
⋃

n<ω Kn for
Kn compact.

Definition 11. A space X is hemicompact if X =
⋃

n<ω Kn

for Kn compact and every compact subset of X is contained
in some Kn.

In general, hemicompact spaces are σ-compact, and σ-
compact spaces are Lindelöf. By considering the games
GruK,P (X) and GruK,L (X) we will obtain an alternate proof
that locally compact Lindelöf spaces are hemicompact.

Theorem 12. If X is a locally compact Lindelöf space, then
K ↑

pre
GruK,L (X) (K has a winning 0-Markov a.k.a. prede-

termined strategy for the game.)

Proof. For each x ∈ X, let Ux be an open neighborhood of
x with Ux compact. Then as X is Lindelöf, choose xn ∈ X
for n < ω such that {Uxn : n < ω} covers X. Define the
predetermined strategy σ for K by σ(n) = Uxn .

Let L : ω→ K(X) legally attackσ, so L(n)∩
⋃

m≤n σ(m) =

∅. For each x ∈ X, choose n < ω with x ∈ Uxn . Then Uxn is
a neighborhood of x which intersects finitely many L(n), so
{L(n) : n < ω} is locally finite. �

Theorem 13. If K ↑
pre

GruK,P (X), then X is hemicompact.

Proof. Let σ be a winning predetermined strategy for K in
GruK,P (X). If C ∈ K(X) is compact, then for each x ∈ C let
Ux be an open neighborhood of x which intersects finitely
many σ(n). Choose xi ∈ C for i < n < ω such that
{Uxi : i < n} covers C. Then

⋃
i<n Uxi contains C and in-

tersects finitely many σ(n), and thus {
⋃

m≤n σ(m) : n < ω}
witnesses hemicompactness. �

Corollary 14. The following are equivalent for any locally
compact space X:

• X is Lindelöf.

• X is σ-compact.

• X is hemicompact.

• K ↑
pre

GruK,P (X).

• K ↑
pre

GruK,L (X).

Compactly generated spaces and predetermined
strategies

Definition 15. A space X is compactly generated if a set is
closed if and only if its intersection with every compact set
is closed. Such spaces are also known as k-spaces.

All locally compact spaces are k-spaces. As will be
shown, the games GruK,P (X), GruK,L (X) are equivalent for
K ’s predetermined strategies in Hausdorff k-spaces.

Definition 16. A space X is a kω-space if there exist compact
sets Kn for n < ω such that a set is closed if and only if its
intersection with every Kn is closed.

Theorem 17. If X is a kω-space, then K ↑
pre

GruK,L (X).

Proof. Let Kn witness that X is a kω-space. Define the pre-
determined strategy σ for K by σ(n) = Kn.

Let L : ω → K(X) be a legal attack against σ, and let
Lω\n =

⋃
n≤m<ω L(m). Then as

Lω\n ∩ Kp =
⋃

n≤m<p

L(m) ∩ σ(p)

is compact for each p < ω, Lω\n is closed.
For each x ∈ X, x ∈ σ(p) for some p, so x ∈ X\Lω\p which

misses all but finitely many L(n), showing that {L(n) : n < ω}
is locally finite and σ is a winning predetermined strat-
egy. �

The following result was observed by Franklin and
Thomas (1977); a proof is provided for convenience.

Proposition 18. Hemicompact k-spaces are kω-spaces.

Proof. Let {Kn : n < ω} be a collection of compact subsets
which witnesses the hemicompactness of the space. Suppose
C ∩ Kn is closed for each n < ω. Let K be any compact sub-
set of the space. There exists some n < ω such that K ⊆ Kn.
Then C ∩ K = (C ∩ Kn) ∩ K is closed. Therefore C is closed
by the definition of k-space. �

As we’ve already seen that K ↑
pre

GruK,P (X) implies

hemicompactness:

Corollary 19. The following are equivalent for any k-space
X:
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• X is kω.

• X is hemicompact.

• K ↑
pre

GruK,P (X).

• K ↑
pre

GruK,L (X).

Non-equivalence of K ↑
pre

GruK,P (X), K ↑
pre

GruK,L (X)

For k-spaces, it has been shown that GruK,P (X) and
GruK,L (X) are equivalent with respect to K ’s winning pre-
determined strategies. Looking at a subspace of the Stone-
Cech compactification βω of ω reveals an example for which
the predetermined strategies are not equivalent.

Definition 20. An ultrafilter on a cardinal κ is a maximal
filter of non-empty subsets of κ. For each α ∈ κ, the ultra-
filter Fα containing all supersets of {α} is called a principal
ultrafilter. All ultrafilters not of this form are called free ul-
trafilters.

In particular note that for any ultrafilter on κ and subset
S ⊆ κ, exactly one of S , κ \ S belongs to the ultrafilter.

Definition 21. The Stone-Cech compactification of a cardi-
nal κ is the space βκ consisting of all ultrafilters on κ, with
open sets of the form US = {F ∈ βκ : S ∈ F } for S ⊆ κ.

From these definitions it is easily verified that principal
ultrafilters are isolated, so κ with the discrete topology may
be viewed as a dense open subspace of βκ, with βκ \ κ rep-
resenting the free ultrafilters on κ. In that case, one might
interpret US as {F ∈ βκ \ κ : S ∈ F } ∪ {α ∈ κ : α ∈ S }.

We wish to consider the subspace of βω consisting of all
principal ultrafilters and a single free ultrafilter F , denoted
by ω ∪ {F }.

Lemma 22. All compact subsets of ω ∪ {F } ⊂ βω are finite.
In particular, the difference of compact sets in ω ∪ {F } is
compact.

Proof. Let ni < ω be distinct for each i < ω. Since {ni : i <
ω} is infinite and discrete, it cannot be compact. So we con-
sider I = {ni : i < ω} ∪ {F }. Let S = {n2i : i < ω}. If S ∈ F ,
then US is a neighborhood of F missing {n2i+1 : i < ω}, so I
contains a closed infinite discrete set and cannot be compact.
Otherwise ω \S ∈ F and Uω\S is a neighborhood of F miss-
ing {n2i : i < ω}; again I contains a closed infinite discrete
set and cannot be compact. �

Theorem 23. K 6↑
pre

GruK,L (ω ∪ {F }) for any free ultrafilter

F .

Proof. Let σ be a predetermined strategy for K , and de-
fine the legal counter-attack H : ω → K(X) by H(n) =

(n∪σ(n+1))\σ(n). Then for any neighborhood US ofF , S is
infinite, and since

⋃
n<ω H(n) ⊇ ω \ σ(0) and |H(n)| < ω, US

meets infinitely many of the H(n). Thus σ is not a winning
predetermined strategy. �

Theorem 24. There exists a free ultrafilter F such that
K ↑

pre
GruK,P (ω ∪ {F }).

Proof. Let F be any free ultrafilter, and define the predeter-
mined strategy σ by σ(n) = n2 ∪ {F }.

Consider the set of all legal attacks A ⊆ ωω by P against
σ. For { fi : i ≤ m} ∈ [A]<ω and m < n < ω, each fi maps
only n points into n2, so

⋃
i≤m range( fi) is coinfinite. Then

G′ = {ω \ range( f ) : f ∈ A} is contained in a free ultra-
filter G, and if F = G, then σ is a winning predetermined
strategy. �

We now show that it is not possible to prove in ZFC that
K ↑

pre
GruK,P (ω ∪ {F }) for every free ultrafilter; assum-

ing the continuum hypothesis (CH), we may find a counter-
example.

Definition 25. A selective ultrafilter S is a free ultrafilter
with the property that for every partition {Bn : n < ω} of
nonempty subsets of ω such that Bn < S for all n, there exists
A ∈ S such that |A ∩ Bn| = 1 for all n.

Theorem 26. Rudin (1956) CH implies the existence of a
selective ultrafilter.

Theorem 27. If S is a selective ultrafilter, then K 6↑
pre

GruK,P (ω ∪ {S}).

Proof. Let σ be a predetermined strategy for K such that
σ(n) ⊃

⋃
m<n σ(m). Then define Bn = ω ∩ (σ(n + 1) \ σ(n)).

Since Bn is always nonempty finite, Bn < F and there exists
A ∈ S such that |A ∩ Bn| = 1.

Define the legal counter-attack p : ω → ω ∪ {S} by
p(n) ∈ A ∩ Bn = A ∩ (σ(n + 1) \ σ(n)). Since A =

(A ∩ σ(0)) ∪ {p(n) : n < ω}, {p(n) : n < ω} ∈ S. There-
fore, every neighborhood of F intersects infinitely many of
the p(n), and p defeats the predetermined strategy σ. �

Of particular note is that the author knows of no examples
of a non-k-space such that K ↑

pre
GruK,L (X).

Question 28. Does K ↑
pre

GruK,L (X) imply X is a k-space?
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