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The line graph L(G) of a simple graph G is defined by V(L(G)) = E(G), with any two vertices
in L(G) adjacent if and only if the corresponding edges in G are incident. A subject of interest
is the integer sequence (|V(G)|, |V(L(G))|, |V(L(L(G)))|, . . .). For a finite, simple, connected
graph G, we look at the number of times a member of the sequence can occur in consecutive
indices. For graphs for which the sequence is convergent, a member can occur consecutively
any number of times. However, beyond these classes of graphs, numbers in the sequence can
only repeat twice in a row. Repetitions more than two in a row are impossible.

Introduction

Let the vertex and edge sets of a simple graph G be de-
noted V(G) and E(G), respectively. The line graph L(G) of
a simple graph G is the graph whose vertices are the edges
of G, with any two vertices in L(G) adjacent if and only if
the corresponding edges in G are incident. The line graph
sequence of G is (Lm(G))m∈Z∗ = (G, L(G), L2(G), . . .), where
Z∗ is the set of nonnegative integers, Lk(G) is the k-th itera-
tion of the line graph operator applied to G, and L0(G) = G.

Of interest is the number of vertices in each iter-
ated line graph; consider the sequence (|V(Lm(G))|)m∈Z∗ =

(|V(G)|, |V(L(G))|, |V(L2(G))|, . . .). van Rooij and Wilf (1965)
showed that for a connected graph G on n vertices, the se-
quence behaves in one of four ways:

(1) If G is the cycle graph Cn, then for each nonnega-
tive integer i, Li(G) is isomorphic to the original cycle.
Thus, (|V(Lm(G))|) = (n, n, n, . . .).

(2) If G is Pn, the path graph on n vertices, then for each
nonnegative integer i, we have

Li(G) =

Pn−i if i < n
P0 if i ≥ n

Thus, (|V(Lm(G))|) = (n, n − 1, n − 2, . . . , 0, 0, . . .).

(3) If G is the claw K1,3, then for each positive integer i,
Li(G) is K3. Thus, (|V(Lm(G))|) = (4, 3, 3, 3, . . .).
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(4) In all other cases, the (|V(Lm(G))|) eventually increases
without bound. Thus, lim

m→∞
|V(Lm(G))| = ∞.

Remark. Alternative (2) above acknowledges the existence
of P0 = L(P1), a graph with no vertices and, therefore, cer-
tainly no edges. Why not call this the empty graph? Because,
in graph theory, the term “empty graph” means something
else: a graph with vertices but no edges. When P0 is referred
to, which is rare, the leading contender for a name for it is:
the null graph.

In some precincts, the null graph is not considered to be
a graph – or if it is a graph, its line graph is undefined. In
this paper, we take the view that P0 is a graph, satisfying
L(P0) = P0.

A sequence of iterated line graphs (Lm(G)) converges to
a graph H if and only if there exists a positive integer N
such that Lk(G) � H for all k ≥ N. Thus, K1,3 converges
to K3, Cn converges to Cn, and Pn converges to the null
graph. The corresponding vertex sequences converge to 3,
n, and 0 respectively. For k ≥ 2, define a k-repetition in the
sequence (|V(Lm(G))|) as the occurrence in the sequence of
|V(Li(G))| = |V(Li+1(G))| = . . . = |V(Li+k−1(G))| for some
nonnegative integer i. Clearly, any k-repetition is possible
if the sequence (Lm(G)) is convergent. The ones of interest,
however, are the nontrivial repetitions that occur in divergent
sequences. The following example shows that “isolated” 2-
repetitions are possible.

.
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The corresponding sequence of orders is (6, 5, 5, 7, . . .).
Our purpose here is to prove that 3-repetitions in the se-

quence (|V(Lm(G))|)m∈Z∗ are impossible if G is finite, con-
nected, and simple, and the sequence (|V(Lm(G))|) is not con-
vergent. This result is surely known, at least folklorically,
and proving it will be little more than a pleasant exercise for
a graph theorist. In fact, we know of two proofs other than
the one we will give here; still, the proof here has some novel
aspects that make it worth giving, we think.

The proof here will seem longer than necessary to any-
one knowledgeable of graph theory, and it is, because we are
writing it for the readers that know little about graphs beyond
the fundamental terms. The only fact from graph theory that
we will use which novice readers might not be able to verify
for themselves is this: if G is a tree – i.e., a connected graph
with no cycle subgraphs – then |E(G)| = |V(G)| − 1.

The impossibility of 3-repetitions and greater

For positive integers n and d, d < n, define the following:

e′(n, d) = min
{
|E(L(G))| : G is a simple, connected

graph on n vertices and has a vertex of degree d
}

B(n, d) =
{
X : X is a simple, connected graph on n

vertices, has a vertex of degree d,

and |E(L(X))| = e′(n, d)
}

Lemma 1. For positive integers n and d, d < n, all elements
of B(n, d) are trees.

Proof. Let X ∈ B(n, d) and v ∈ V(X) of degree d < n. Sup-
pose X contains a cycle. Then that cycle contains an edge e
not adjacent to v. Then X − e, the graph obtained by remov-
ing the edge e from X, is a connected graph on n vertices.
Thus, |E(L(X − e))| < |E(L(X))|, which is a contradiction to
|E(L(X))| = e′(n, d). �

Lemma 2. For positive integers n and d, d < n, e′(n, d) <
e′(n + 1, d).

Proof. Let X ∈ B(n + 1, d) and v ∈ V(X) with degree d < n.
By Lemma 1, X is a tree, so let u ∈ V(X) be of degree 1. If
all vertices of X of degree 1 are adjacent to v, then X � K1,n,
with v being the one vertex of X of degree n. But then n = d,
contradicting n > d. Therefore, there is a vertex u ∈ V(X) of
degree 1 which is not adjacent to v. X−u, the graph obtained
by removing the vertex u from X, is a connected graph on n
vertices containing a vertex, namely v, of degree d. There-
fore, e′(n, d) ≤ |E(L(X − u))| < |E(L(X))| = e′(d, n + 1). �

Lemma 3. For a finite, simple, non-null, connected graph
G, |V(G)| = |E(G)| if and only if G contains exactly one cycle
subgraph. Furthermore, |E(G)| > |V(G)| if and only if G
contains at least two cycle subgraphs.

Proof. We depart from the well known fact that for any (non-
null) tree T , |E(T )| = |V(T )| − 1. If n = |V(G)| = |E(G)|, then
G is not a tree, but is connected, by hypothesis, so G must
contain a cycle. If G contains another cycle, then G contains
an edge e in one cycle but not the other. Then G − e is a
connected simple graph (because G is, and e is on a cycle)
containing a cycle. Additionally, E(G − e) = n − 1. Whether
G − e has more than one cycle, or only one, we can go to a
tree T from G− e by removing edges to destroy cycles. Then
|E(T )| < n− 1 = |V(T )| − 1, an impossibility for a tree. Thus,
|E(G)| = |V(G)| implies that G contains exactly one cycle
subgraph.

Conversely, if G (connected by hypothesis) contains ex-
actly one cycle subgraph, then removing one edge from G
gets us to a tree T on n = |V(G)| vertices. Then |E(G)| − 1 =

|E(T )| = n − 1, implying |E(G)| = |V(G)|.
The remaining claim of the lemma is a corollary of the

first claim:
G contains 2 or more different cycles

⇐⇒ G is neither a tree nor unicyclic
⇐⇒ |E(G)| ≥ |V(G)| − 1 = n − 1 and |E(G)| < {n, n − 1}
⇐⇒ |E(G)| > n = |V(G)|

(The fact that |E(G)| ≥ |V(G)| −1 if G is connected is an aux-
iliary of the fact that |E(T )| = |V(T )| − 1 for every non-null
tree T .) �

Theorem 1. For positive integers n > d:
(i) If d ∈ 1, 2, then B(n, d) = {Pn}.
(ii) If d > 2, then all elements of B(n, d) are of the form

shown, where m1, . . . ,md are non-negative integers satisfy-
ing m1 + . . . + md + d + 1 = n.

Proof. In every case, by Lemma 1, every element X ∈

B(n, d) is a tree, so n = |V(X)| = |E(X)|+ 1 = |V(L(X))|+ 1 ≤
|E(L(X))| + 2; the last inequality holds because L(X) is con-
nected.
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Suppose that d ∈ 1, 2. Then Pn has a vertex of degree
d, and |E(L(Pn))| = |E(Pn−1)| = n − 2 ≤ |E(L(X))| for any
X ∈ B(n, d), by the remarks above. Therefore, n−2 = e′(n, d)
and Pn ∈ B(n, d).

If X is a tree on n vertices which is not a path, then X con-
tains a vertex of degree strictly greater than 2 in X. Therefore,
L(X) contains a C3, arising from 3 edges incident to the same
vertex. By Lemma 3, since L(X) is connected and simple,
|E(L(X))| ≥ |V(L(X))| = |E(X)| = n − 1 > n − 2 = e′(n, d).
Therefore, X < B(n, d). Thus, B(n, d) = {Pn}.

Now suppose that d ≥ 3. We proceed by induction on
n > d. If n = d + 1, then clearly K1,d is the only element
of B(n, d), since it is the only tree on d + 1 vertices contain-
ing a vertex of degree d. This verifies the conclusion when
n = d + 1: m1 = . . . = md = 0.

Now suppose that the claim holds for some n > d. Let
Y ∈ B(n, d). By the induction hypothesis, Y is of the given
form. Let X, a tree on n + 1 vertices with a vertex v of degree
d, be obtained from Y by adding a leaf to one of the branches
(paths) emanating from v. Then e′(n + 1, d) ≥ e′(n, d) + 1 =

|E(L(Y))| + 1 = |E(L(X))| ≥ e′(n + 1, d) (Lemma 2). There-
fore, e′(n + 1) = e′(n, d) + 1 and every such X, which is of
the desired form, is in B(n + 1, d).

On the other hand, suppose that X ∈ B(n + 1, d). Because
X is a tree on n + 1 > d + 1 ≥ 4 vertices, X contains an edge
yx such that dX(x) = 1, and y , v, where v is a vertex in X of
degree d ≥ 3.

(To see this, consider d walks starting from v and heading
out along the d different edges incident to v. Because X is
a tree on n + 1 > d + 1 vertices, at least one of these walks
will have a continuation, after that first edge traversal, to a
walk of length greater than or equal to 2. Keep walking on
that continuation, making arbitrary choices at forks in the
road, but never turning back, until you get to a vertex of X of
degree 1.)

Let Y = X − x. Then
e′(n, d) ≤ |E(L(Y))|

= |E(L(X))| − dY (y)
= e′(n + 1, d) − dY (y)
= e′(n, d) + 1 − dY (y)

Therefore, dY (y) = 1 and Y ∈ B(n, d). By the induction hy-
pothesis applied to Y , and the way X is obtainable from Y ,
we see that X has the required form. �

Theorem 2. Let G be a non-null, finite, simple, connected
graph. If |V(G)| = |V(L(G))| = |V(L2(G))|, then G is a cycle
graph.

Proof. Since n = |V(G)| = |V(L(G))| = |E(G)| and G is not
the null graph, G is not a tree; in fact, by Lemma 3, G is
unicyclic.

Let d = 4(G), the maximum degree in G. If d = 1,
then G, connected, must be a single edge, which is a tree;
if d = 2, then, because G is not a tree, G must be a cy-
cle. Therefore, we may as well assume that d ≥ 3. Since
the elements of B(n, d) are trees, G < B(n, d). Therefore,
e′(n, d) ≤ |E(L(G))|−1 = |V(L2(G))|−1 = |V(G)|−1 = n−1.

Any X ∈ B(n, d) is of the form in Theorem 4 for d ≥ 3.
Therefore, for some non-negative integers m1, . . . ,md satis-
fying m1 + . . .md = n − d − 1,

e′(n, d) = |E(L(X))|

=

(
d
2

)
+ m1 + . . . + md

=
d(d − 1)

2
+ n − d − 1 ≤ n − 1

⇐⇒ d(d − 3) ≤ 0

Since d ≥ 3, we conclude that d = 3.
Since G, unicyclic, contains a vertex of degree 3, then

L(G) contains at least two cycles, one from the cycle in G
and a C3 from 3 edges incident to the same vertex. By
Lemma 3, it follows that |V(L2(G))| = |E(L(G))| > |V(L(G))|,
contradicting the supposition that |V(G)| = |V(L(G))| =

|V(L2(G))|. �

Corollary 1. If G is a non-null, finite, simple, con-
nected graph and there is a k-repetition in the sequence
(|V(Lm(G))|)m∈Z∗ for some k ≥ 3, then G is either a path,
a cycle, or K1,3.

K1,3, The Claw

Proof. If |V(Lm(G))| = |V(Lm+1(G))| = |V(Lm+2(G))| for
some m ≥ 0, then either H = Lm(G) is the null graph, in
which case G is a path, or H is a cycle, by Theorem 5. In
the latter case, if G is not a cycle, then we can let m > 0
be the smallest integer such that Lm(G) is a cycle. Letting
X = Lm−1(G), we have that H = L(X), H is a cycle, and
X is not a cycle. Therefore, |V(X)| , |E(X)| = |V(L(X))| =

|V(H)| = |V(L(H))| = |V(L2(X))|, for, otherwise, X would
be a cycle, by Theorem 5. So either |V(X)| > |E(X)| or
|V(X)| < |E(X)|.

If |V(X)| < |E(X)|, then, by Lemma 3, X contains 2 or
more different cycles. Since each cycle in a graph gives
rise to a cycle in its line graph, it follows that H = L(X)
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has two or more cycles, whence, by Lemma 3, |V(H)| <
|E(H)| = |V(L(H))|, contrary to assumption. Therefore,
|V(X)| > |E(X)|. Since X is connected, X must be a tree.

Since X is a tree and L(X) is a cycle, X must have exactly
one vertex of degree 3 and no edges other than the 3 edges
incident to that vertex; i.e., X = K1,3. Since, as is well known
and easy to see, K1,3 is not the line graph of any graph, m = 1

and G = X = K1,3. �
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