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A friend of 12 is a positive integer different from 12 with the same abundancy index. By
enlarging the supply of methods of Ward (2008), it is shown that (i) if n is an odd friend of 12,
then n = m2, where m has at least 5 distinct prime factors, including 3, and (ii) if n is an even
friend of 12 other than 234, then n = 2 · qe · m2, in which q is a prime, e is a positive integer,
29 ≤ q ≡ e ≡ 1 mod 4, and m has at least 3 distinct odd prime factors, one of which is 3, and
the other, none equal to q, are greater or equal to 29.

The Abundancy Index

Let P denote the set of positive integers. For n ∈ P, let
σ(n) denote the sum of all positive divisors of n, includ-
ing n itself. It is well know, and not hard to see, that σ is
weakly multiplicative: That is, if m, n ∈ P and gcd(m, n) = 1,
then σ(mn) = σ(m)σ(n). Therefore, if q1, . . . , qt ∈ P
are distinct primes, and e1, . . . , et ∈ P, then σ(
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qi−1 . For instance,

σ(12) = σ(3)σ(4) = (1 + 3)(1 + 2 + 4) = 28.
The abundancy ratio, or abundancy index, of n ∈ P, is

I(n) =
σ(n)

n . From previous remarks about σ we have the fol-
lowing facts about properties of the abundancy index. Ward
(2008) also mentioned these properties.

1. I is weakly multiplicative.

2. If q1, . . . , qt ∈ P are distinct primes, and e1, . . . , et ∈
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3. If q ∈ P is a prime, then, as e ∈ P increases from 1,
I(qe) is strictly increasing, from q+1

q , and tends to q
q−1

as e→ ∞.

4. If e ∈ P, as q increases among the positive primes,
I(qe) is strictly decreasing.

5. If m, n ∈ P and m | n, then I(m) ≤ I(n), with equality
only if m = n.
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Interest in the abundancy index arises from interest in
perfect numbers, positive integers with abundancy index 2.
Mathematicians have been curious about perfect numbers
since antiquity, and the abundancy index offers a context
within which to study them indirectly. Perhaps asking ques-
tions about the abundancy index will lead to the development
of theory applicable to question about the perfect numbers.
See Ward (2008) for more references on the abundancy in-
dex.

Friends

Positive integers m and n are friends if and only if m , n
and I(m) = I(n). Thus, different perfect numbers are friends.
As in Ward (2008), it is easy to see that 1 has no friend,
and that no prime power has a friend. It is not known if any
positive integer has infinitely many friends.

Every element of {1, . . . , 9} is a prime power except for 1
and 6. I(1) = 1, and 1 has no friend; 6 is the smallest per-
fect number. (Actually, everything we would want to know
about even perfect numbers, except whether or not there are
infinitely many of them, is known, thanks to Euler.) There-
fore, the first frontier of the study of friends is made up of the
integers 10, 12, 14, 15, and 18.

In Ward (2008), Ward took on 10, and proved, among
other things, that any friend of 10 must be a square with at
least 6 distinct prime factors, including 5, the smallest. It
is still unknown whether or not 10 has a friend; however,
we feel that Ward has done service by pioneering methods
other than "computer search" for hunting for friends of given
integers.

The aim here is to apply Ward’s methods, with a few new
tricks thrown in, to the search for friends of 12. Computer
search has already discovered 234 to be a friend of 12. This
discovery can also be made rationally, by Ward-like argu-
ments. Using these arguments, with a few twists, we shall
obtain a theorem about the friends of 12 similar to Ward’s
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theorem about friends of 10. The following lemma will be
useful. The proof is straightforward.

Lemma 1. If p is an odd prime and e ∈ P, then σ(pe) is odd
if and only if e is even. If p ≡ 3 mod 4 and e is odd, then
4 | σ(pe). If p ≡ 1 mod 4 then σ(pe) ≡ e + 1 mod 4.

Corollary 1. If n ∈ P and both n and σ(n) are odd, then
n = k2 for some k ∈ P. If n is even and σ(n) is odd, then
n = 2 f k2 for some f , k ∈ P.

Friends of 12

Theorem 1. If n < {12, 234} is a positive integer such that
I(n) = I(12) = I(234) = 7

3 and n is odd, then n =

32a∏k
i=1 p2ei

i , where p1, . . . , pk are distinct primes greater
than 3, a, e1, . . . , ek ∈ P, and k ≥ 4. If n < {12, 234},
I(n) = 7

3 and n is even, then n = 2 · 32a · qe∏k
i=1 p2ei

i , where
q, p1, . . . , pk are distinct primes greater than or equal to 29,
a, e, e1, . . . , ek ∈ P, a ≥ 3, k ≥ 2, and q ≡ e ≡ 1 mod 4.

Proof. Preassuming its existence, let n < {12, 234} be a pos-
itive integer such that I(n) = 7

3 . Since σ(n)
n = I(n) = 7

3 ,
3σ(n) = 7n and therefore 3 | n.

Suppose n is odd. Since 3σ(n) = 7n and 7n is odd, σ(n)
is odd. Since both n and σ(n) are odd, n must be a square, by
Corollary 2.1. Therefore, n = 32am2, where a,m ∈ P, m is
odd and 3 - m.

If m is 1, then I(n) = I(32a) < 3
2 <

7
3 =I(n), a contradiction.

Therefore m > 1, so n = 32a∏k
i=1 p2ei

i , where p1, . . . , pk are
distinct primes greater than 3, a, e1, . . . , ek ∈ P, and k ≥ 1.

If k ≤ 2, then I(n) ≤ I(32a52e1 72e2 ) < 3
2

5
4

7
6 <

7
3 . Therefore

k ≥ 3.
If k = 3, then since I(32a52e1 72e2 172e3 ) < 3
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7
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I(32a52e1 112e2 132e3 ) < 3
2
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3 , p1 = 5, p2 = 7, and
p3 ∈ {11, 13}.

Verify that I(345272112) = 121
81

31
25

57
49

133
121 > 7

3 . Thus if
n = 32a52e1 72e2 112e3 , then a = 1. But then 7n = 3σ(n) =

3σ(3252e1 72e2 112e3 ) = 3 · 13 · σ(52e1 72e2 112e3 ) would imply
that 13 | n, which does not hold. Therefore p3 , 11.

Similarly, verify that I(365272132) = 1093
729

31
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57
49

183
169 > 7

3 .
Thus if n = 32a52e1 72e2 132e3 , a ∈ {1, 2}. If a = 1 then
I(n) = I(3252e1 72e2 132e3 ) = 13

9 I(52e1 72e2 132e3 ) < 13
9

5
4

7
6

13
12 <

7
3

so a , 1. If a = 2 then 7n = 3σ(n) = 3σ(3452e1 72e2 132e3 ) =

3 · 121 ·σ(52e1 72e2 132e3 ) would imply that 11 | n, which does
not hold. Therefore a < {1, 2} and we conclude that k ≥ 4.

Therefore, if n is odd and I(n) = 7
3 , then n =

32a∏k
i=1 p2ei

i , where p1, . . . , pk are distinct primes greater
than 3, a, e1, . . . , ek ∈ P, and k ≥ 4.

Now, suppose n is even. Since 3 | n, 22 does not divide n
because if it did then 12 would divide n and we would have
I(n) > I(12) = 7

3 . So n = 2 · 3b · m, where b,m ∈ P, m is odd
and 3 - m.

If m = 1, then I(n) = I(2 · 3b) = I(2)I(3b) < 3
2

3
2 < 7

3 .
Therefore m > 1, and n = 2 · 3b∏k

i=1 q fi
i where b, f1, . . . , fk ∈

P, k ≥ 1 and q1 < · · · < qk are distinct primes greater than 3.
Since 7n = 3σ(n) = 3σ(2 · 3b∏k

i=1 q fi
i ) = 3 · 3 ·

σ(3b∏k
i=1 q fi

i ), 2 | σ(3b∏k
i=1 q fi

i ) but 4 = 22 - σ(3b∏k
i=1 q fi

i ).
If all of b, f1, . . . , fk are even then σ(3b∏k

i=1 q fi
i ) would be

odd, and if two or more of b, f1, . . . , fk are odd then we would
have 4 | σ(3b∏k

i=1 q fi
i ). Therefore exactly one of b, f1, . . . , fk

is odd. Further, by Lemma 2.1, if q ≡ 3 mod 4 and is a
prime and e ≡ 1 mod 2 then σ(qe) ≡ 0 mod 4 and if q ≡ 1
mod 4 and e ≡ 3 mod 4 then σ(qe) ≡ 0 mod 4. Therefore
b must be even, and exactly one of fi, 1 ≤ i ≤ k is congruent
to 1 mod 4. Also, for such fi its corresponding prime divi-
sor qi is also congruent to 1 mod 4. That is, n = qe(3m)2,
where m is a positive odd integer, q is prime that does not
divide m, and q ≡ e ≡ 1 mod 4.

If b = 2, then 7n = 3σ(n) = 3σ(2 ·32∏k
i=1 q fi

i ) = 3 ·3 ·13 ·
σ(
∏k

i=1 q fi
i ) would imply that 13 | n. But then 234 = 2 ·32 ·13

would divide n, and therefore I(n) > I(234) = 7
3 . Therefore,

b , 2. Also, if b = 4, then 7n = 3σ(n) = 3σ(2 ·34∏k
i=1 q fi

i ) =

3 · 3 · 121 · σ(
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i ) would imply that 11 | n. But then it

follows that I(n) ≥ I(2·34 ·11) = 3
2

121
81

12
11 >

7
3 , so we conclude

that b , 4. Therefore b ≥ 6.
Since 7

3 = I(n) ≥ I(2 · 36 · q1) = 3
2
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, it follows that
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37−1 and thus q1 > 26. Therefore q1 ≥ 29.

If k = 1, then I(n) = I(2 · 3b · q f1
1 ) ≤ I(2 · 3b · 29 f1 ) =

I(2)I(3b · 29 f1 ) < 3
2
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2
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7
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Suppose k = 2. Since 7
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1 · q
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2 ) >
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Also, since 7
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≤
1134
1093

⇐⇒ (q1 + 1)(q2 + 1) ≤
1134
1093

q1q2

⇐⇒
41

1093
q1q2 − q1 − q2 − 1 ≥ 0

⇐⇒ (
41
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q1 − 1)(q2 −

1093
41

) −
1134

41
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⇐⇒ q2 ≥
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+
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41

,

and
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q1

q1 − 1
q2

q2 − 1
>
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⇐⇒
27
28

q1q2 > (q1 − 1)(q2 − 1)

⇐⇒
1

28
q1q2 − q1 − q2 + 1 < 0

⇐⇒ (
1
28

q1 − 1)(q2 − 28) − 27 < 0

⇐⇒ q2 <
27

1
28 q1 − 1

+ 28 =
756

q1 − 28
+ 28,

so we have the inequality

1239462
1681q1 − 44813

+
1093

41
≤ q2 <

756
q1 − 28

+ 28. (1)

Since 29 ≤ q1 < q2 and q2 < 756
q1−28 + 28, 29 ≤ q1 <

756
q1−28 +27. To satisfy this inequality, q1 must be in the interval
[29, 55] and therefore q1 ∈ {29, 31, 37, 41, 43, 47, 53}.

If b = 6, then 7n = 3σ(n) = 3σ(2 · 36 · q f1
1 · q f2

2 ) =

3 · 3 · 1093 · σ(q f1
1 · q

f2
2 ) so 1093 would divide n. But since

q2 <
756

q1−28 + 28 and q1 ∈ {29, 31, 37, 41, 43, 47, 53}, q2 < 784
and so 1093 < {q1, q2}. Therefore b , 6. If b = 8, then
since 13 | 9841 = σ(38) and σ(38) | 3σ(n) = 7n, 13 would
divide n. However, since 13 < 29 ≤ q1 < q2, 13 does
not divide n and therefore b , 8. Likewise, if b = 10,
then since 23 | σ(310) = 88573, 23 would divide n. Since
23 < 29 ≤ q1 < q2, 23 - n and therefore b , 10. Therefore
b ≥ 12.

Suppose q1 = 29. By the inequality (1), 341 < q2 < 784.
If f1 = 1, then 7n = 3σ(n) = 3σ(2 · 3b · 291 · q f2

2 ) =

3 ·3 ·σ(3b) ·30 ·σ(q f2
2 ) so 5 would divide n. Therefore f1 , 1.

Likewise, f1 , 2 because 13 | 871 = σ(292) but 13 - n.
Therefore, f1 ≥ 3. So we have 7

3 = I(n) ≥ I((2·312 ·293 ·q2) =
3
2

313−1
2·312

294−1
28·293

q2+1
q2

, and therefore 781 < q2. Since there is no
prime between 781 and 784, this is a contradiction and we
conclude that q1 , 29.

Suppose q1 = 31. By (1), 196 < q2 < 280; f1 must be
even because q1 ≡ 3 mod 4, and f1 , 2 because if f1 = 2
then 7n = 3σ(n) = 3σ(2·3b ·312 ·q f2

2 ) = 3·3·σ(3b)·993·σ(q f2
2 )

would imply that 331 | n, which does not hold because
31 = q1 < q2 < 280 < 331. So f1 ≥ 4, and we have
7
3 = I(n) ≥ I(2 · 312 · 314 · q2) = 3

2
313−1
2·312

315−1
30·314

q2+1
q2

, therefore
q2 > 278. This is a contradiction because there is no prime
between 278 and 280. Therefore q1 , 31.

Suppose q1 = 37. By (1), 97 < q2 < 112. f1 , 1 be-
cause 19 | σ(371) but 19 - n. So f1 ≥ 2, and therefore
7
3 = I(n) ≥ I(2 · 312 · 372 · q2) = 3

2
313−1
2·312

373−1
36·372

q2+1
q2

. This in-
equality is valid only if q2 > 110, and this is a contradiction
because there is no prime between 110 and 112. Therefore
q1 , 37.

Suppose q1 = 41. By (1), 78 < q2 < 86, or q2 ∈ {79, 83}.
Since 79 ≡ 83 ≡ 3 mod 4 and q1 = 41 ≡ 1 mod 4, f1 ≡ 1
mod 4 and f2 is even. Verify that I(2 · 312 · 41 · 792) > 7

3 ,
therefore q2 , 79. Verify also that I(2 · 312 · 415 · 832) > 7

3 ,
so if n = 2 · 3b · 41 f1 · 83 f2 then f1 = 1. But then
I(n) = I(2 ·3b ·41 ·83 f2 ) = I(2)I(41)I(3b83 f2 ) < 3

2
42
41

3
2

83
82 <

7
3 ,

therefore q2 , 83. So q2 < {79, 83}, and this is a contradic-
tion so we conclude that q1 , 41.

If q1 = 43, 71 < q2 < 78 by (1) so q2 = 73, and
f1 is even because q1 ≡ 3 mod 4. It would follow that
I(n) ≥ I(2 · 312 · 432 · 73) = 3

2
313−1
2·312

433−1
42·432

74
73 > 7

3 ; therefore
q1 , 43.

If q1 = 47, then 62 < q2 < 68 by (1) so q2 = 67. But
since 47 ≡ 67 ≡ 3 mod 4, q1 , 47, for if q1 = 47 then
n = 2 · 3b · 47 f1 · 67 f2 and σ(n) = σ(2 · 3b · 47 f1 · 67 f2 ) would
either be odd or divisible by 4.

If q1 = 53, then 54 < q2 < 59. Since there is no prime
between 54 and 59, q1 , 53.

Therefore, q1 < {29, 31, 37, 41, 43, 47, 53}. This is contra-
dictory to the assumption that k = 2, so we conclude that
k ≥ 3.

Therefore, n = 2 · 32a · qe∏k
i=1 p2ei

i , where q, p1, . . . , pk

are distinct primes greater or equal to 29, a, e, e1, . . . , ek ∈ P,
a ≥ 3, k ≥ 2, and q ≡ e ≡ 1 mod 4.
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