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We derive a useful characterization of 3-by-3 copositive-plus matrices in terms of their entries,
and use it to solve the copositive-plus matrix completion problem in the case of specified
diagonal by showing that a partial copositive-plus matrix with graph G has a copositive-plus
completion if and only if G is a pairwise disjoint union of complete subgraphs.

Introduction

In this article, the superscript “>” denotes transposi-
tion and Rn the set of all real n-vectors. A vector x =

(x1, . . . , xn)> ∈ Rn is said to be nonnegative, denoted by
x > 0, if xi > 0 for all i = 1, . . . , n.

Let S n denote the set of all n × n real symmetric matrices.
A matrix A ∈ S n is said to be

(1) (real) positive semidefinite if x>Ax > 0 for all x ∈ Rn;

(2) copositive if x>Ax > 0 for all x > 0;

(3) copositive-plus if A is copositive and if x>Ax = 0 with
x > 0 implies Ax = 0;

(4) strictly copositive if x>Ax > 0 for all nonzero x > 0.

Positive semidefinite matrices are copositive by definition.
Moreover, if A ∈ S n is positive semidefinite and x ∈ Rn,
then x>Ax = 0 if and only if Ax = 0 (Horn & Johnson,
1985, p.400, Problem 1). A parallel comparison of positive
semidefinite matrices and copositive-plus matrices was made
in Cottle, Habetler, and Lemke (1970b).

Following Cottle, Habetler, and Lemke (1970a), we de-
note the class of copositive (copositive-plus, strictly copos-
itive, resp.) matrices by C (C+, C∗, resp.). Obviously,
C∗ ⊂ C+ ⊂ C. Each of the three classes of copositive matri-
ces has three important properties: inheritance, closure un-
der permutation similarity, and closure under positive diag-
onal congruence, i.e., if S denotes any class of copositive
matrices and A ∈ S , then every principal submatrix of A is in
S , P>AP ∈ S for any permutation matrix P, and DAD ∈ S
for any positive diagonal matrix D.

Copositive matrices have applications in control theory,
optimization modeling, linear complementarity problems,
and many other branches of pure and applied mathematics
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(cf. Hiriart-Urruty and Seeger (2010)). See recent surveys
Hiriart-Urruty and Seeger (2010) and Ikramov and Savel’eva
(2000) on copositive matrices and references therein.

A partial matrix is one in which some entries are spec-
ified, while the remaining entries are unspecified and free
to be chosen. A completion of a partial matrix is a choice
of values for the unspecified entries. A matrix completion
problem asks which partial matrices have completions with
a desired property. A partial C+ (C, C∗, resp.) matrix is a
real symmetric partial matrix such that every fully specified
principal submatrix is C+ (C, C∗, resp.). The C and C∗ ma-
trix completion problems were solved in Hogben, Johnson,
and Reams (2005) and Hogben (2007), but the C+ matrix
completion problem has remained open.

Our main interest here is in the following C+ matrix com-
pletion problem: Under the assumption that the main diago-
nal is specified, which patterns for the specified entries of a
partial C+ matrix ensure that each partial matrix with one of
these patterns can be completed to a C+ matrix?

In Section 2, we give a new characterization of 3 × 3
copositive-plus matrices in terms of their entries. In Sec-
tion 3, this result is used to solve the C+ matrix completion
problem listed above.

A characterization of copositive-plus matrices of order
n 6 3

We begin with the following characterization of 2 × 2
copositive-plus matrices in terms of their entries. We omit
the proof since it follows from straightforward computation.

Lemma 1. The real symmetric matrix
[

a b
b d

]
is

copositive-plus if and only if the following conditions are sat-
isfied:

(1) a > 0 and d > 0,

(2a) b = 0 when ad = 0,

(2b) b > −
√

ad when ad > 0.
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Moreover, it is strictly copositive if and only if a > 0, d > 0,
and b > −

√
ad.

Combining (Hadeler, 1983, Theorem 4) and (Simpson &
Spector, 1983, Theorem 2.2), we have the following charac-
terization of 3 × 3 copositive matrices, which will be useful
in characterizing 3 × 3 copositive-plus matrices in terms of
their entries.

Lemma 2. The real symmetric matrix A =

 a b s
b d c
s c e

 is

copositive if and only if the following conditions are satisfied:

(1) a > 0, d > 0, e > 0,

(2) b > −
√

ad, c > −
√

de, s > −
√

ae,

(3)
√

ade + b
√

e + c
√

a + s
√

d +

+

√
2(b +

√
ad)(c +

√
de)(s +

√
ae) > 0.

Moreover, A is strictly copositive if and only if all the above
conditions are satisfied with strict inequality. If

√
ade +

b
√

e + c
√

a + s
√

d 6 0, Condition (3) is equivalent to
det A > 0.

The following characterization of 3 × 3 copositive-plus
matrices with unit diagonal will be crucial in the proof of
the main results.

Lemma 3. The matrix A =

 1 α β
α 1 γ
β γ 1

 is copositive-plus

if and only if

(1) it is permutation similar to

 1 α −α
α 1 −1
−α −1 1

 with

−1 6 α 6 1, or

(2) α, β, γ > −1 and
1 + α + β + γ +

√
2(1 + α)(1 + β)(1 + γ) > 0.

Proof. Since C+ ⊂ C, by Lemma 2 we may assume that
α, β, γ > −1 and

1 + α + β + γ +
√

2(1 + α)(1 + β)(1 + γ) > 0. (1)

Denote Q(v) =: v>Av for v = (x, y, z)> > 0. We consider the
following two cases:

Case 1: at least one of α, β, γ is −1. Then after applying
permutation similarity, we can assume γ = −1. Then (1)
reduces to α + β > 0. We claim that A ∈ C+ if and only if
α + β = 0. Note that

Q(v) = x2 + y2 + z2 + 2αxy + 2βxz − 2yz

= x2 + (y − z)2 + 2αx(y − z) + 2(α + β)xz

= (αx + y − z)2 + (1 − α2)x2 + 2(α + β)xz.

If α + β = 0, then Q(v) = 0 if and only if

αx + y − z = 0 and (1 − α2)x = 0

i.e., if and only ifx + α(y − z) = 0 if α = ±1
x = 0 and y = z if α , ±1

i.e., if and only if Av = 0. Hence, A ∈ C+.
On the other hand, if α + β , 0, then Q(v) = 0 and

Av = (α + β, 0, 0)> for v = (0, 1, 1)>, hence A < C+. Note
that α + β = 0 and α, β > −1 imply −1 6 α, β 6 1.

Case 2: α, β, γ > −1. We claim that A ∈ C+ if and only if
(1) holds. Since A ∈ C∗ if and only if strict inequality in (1)
holds, it remains to show that A ∈ C+ if

1 + α + β + γ +
√

2(1 + α)(1 + β)(1 + γ) = 0, (2)

which implies that 1 + α + β + γ 6 0. Since we assume
α, β, γ > −1, it follows that

− 1 < α, β, γ < 1. (3)

Moreover, we have det A = 0 by Lemma 2. Now that

1 + 2αβγ − α2 − β2 − γ2 = det A = 0, (4)

we then have

αγ − β =

√
(1 − α2)(1 − γ2) > 0; (5)

αβ − γ =

√
(1 − α2)(1 − β2) > 0; (6)

βγ − α =

√
(1 − β2)(1 − γ2) > 0. (7)

By solving the linear equation Av = 0, we know that every
solution is a scalar multiple of (αγ − β, αβ − γ, 1 − α2)>, i.e.,
a scalar multiple of (

√
1 − γ2,

√
1 − β2,

√
1 − α2)>.

Now we write

Q(v) = x2 + y2 + z2 + 2αxy + 2βxz + 2γyz

= p

 x√
1 − γ2

−
y√

1 − β2

2 + q

 x√
1 − γ2

−
z

√
1 − α2

2

+ r

 y√
1 − β2

−
z

√
1 − α2

2
=: p(x̂ − ŷ)2 + q(x̂ − ẑ)2 + r(ŷ − ẑ)2,

where by (4), (5), (6), and (7)

p = −α

√
(1 − β2)(1 − γ2) = α(α − βγ) =

1 + α2 − β2 − γ2

2
;

(8)

q = −β

√
(1 − α2)(1 − γ2) = β(β − αγ) =

1 + β2 − α2 − γ2

2
;

(9)

r = −γ

√
(1 − α2)(1 − β2) = γ(γ − αβ) =

1 + γ2 − α2 − β2

2
.

(10)
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From (2) and (3), we see that at most one of α, β, γ is non-
negative. If −1 < α, β, γ 6 0, then p, q, r > 0 and hence
Q(v) = 0 if and only if x̂ = ŷ = ẑ, i.e., Av = 0, hence A ∈ C+.
If exactly one of α, β, γ is positive, say −1 < β, γ < 0 < α < 1
and so −1 < p < 0 < q, r < 1, we claim that Q(v) = 0 if and
only if x̂ = ŷ = ẑ, i.e., Av = 0.

We first note that p+q = 1−γ2 > 0, and p+r = 1−β2 > 0
by (8), (9) and (10). Then it is easy to see that Q(v) > 0 if ex-
actly two of x̂, ŷ, ẑ are equal. It remains to show that Q(v) > 0
if x̂, ŷ, ẑ are distinct.

Since p < 0, p + q > 0, and p + r > 0, we assume that
|x̂ − ŷ| = |x̂ − ẑ| + |ŷ − ẑ|, i.e., ẑ is between x̂ and ŷ (The other
two cases are trivial. For example, if |x̂ − ẑ| = |x̂ − ŷ| + |ŷ − ẑ|,
then Q(v) > p(x̂ − ŷ)2 + q(x̂ − ẑ)2 > (p + q)(x̂ − ŷ)2 > 0).
Denote u =: |x̂ − ẑ| > 0 and v =: |ŷ − ẑ| > 0. Then

Q(v) = p(u + v)2 + qu2 + rv2

= (p + q)u2 + (p + r)v2 + 2puv

= (1 − γ2)u2 + (1 − β2)v2 + 2α(α − βγ)uv

= (
√

1 − γ2u −
√

1 − β2v)2

+ 2(
√

(1 − β2)(1 − γ2) − α(βγ − α))uv

= (
√

1 − γ2u −
√

1 − β2v)2 + 2(1 − α)(βγ − α)uv (by (7))

> 0

This completes the proof. �

The following result characterizes 3 × 3 copositive-plus
matrices in terms of their entries.

Theorem 4. A real symmetric matrix A of order 3 is
copositive-plus if and only if A is permutation similar to one
of the following forms:

(1)

 a 0 0
0 0 0
0 0 0

 with a > 0,

(2)

 a b 0
b d 0
0 0 0

 with a, d > 0 and b > −
√

ad,

(3)

 a b s
b d c
s c e

 with a, d, e > 0 and

c = −
√

de, −
√

ad 6 b 6
√

ad, −
√

ae 6 s 6
√

ae,
and b

√
e + s

√
d = 0,

(4)

 a b s
b d c
s c e

 with a, d, e > 0 and

c > −
√

de, b > −
√

ad, s > −
√

ae, and√
ade + b

√
e + c

√
a + s

√
d

+

√
2(b +

√
ad)(c +

√
de)(s +

√
ae) > 0.

Proof. Let A =

 a b s
b d c
s c e

 be real symmetric with non-

negative diagonal entries. According to Lemma 1 and the
inheritance property of C+ matrices, the rows and columns
containing a zero diagonal entry are zero. Therefore, if
ade = 0, then A ∈ C+ if and only if A is in Form (1) or
Form (2), up to permutation similarity. On the other hand, if

a, d, e > 0, then A ∈ C+ if and only if

 1 α β
α 1 γ
β γ 1

 ∈ C+,

since

A =


√

a 0 0
0

√
d 0

0 0
√

e


 1 α β
α 1 γ
β γ 1



√

a 0 0
0

√
d 0

0 0
√

e

 ,
when α =

b
√

ad
, β =

s
√

ae
, γ =

c
√

de
. The proof is then

completed by applying Lemma 3. �

Remark 5. A matrix having Form (3) in Theorem 4 corre-
sponds to a matrix having Form (1) in Lemma 3, while one
having Form (4) with the following equality

√
ade+b

√
e+c
√

a+s
√

d+

√
2(b +

√
ad)(c +

√
de)(s +

√
ae) = 0
(11)

corresponds to one having Form (2) in Lemma 3 with (2).

As seen from the proof of Lemma 3, a matrix having
Form (3) in Theorem 4 or Form (4) satisfying (11) is positive
semidefinite (its determinant is 0). This yields the following
characterization of C+ matrices of order no more than 3.

Corollary 6. (Väliaho, 1986, Theorem 5.4) A matrix A ∈ S n

with n 6 3 is copositive-plus if and only if it is positive
semidefinite or, after deleting the possible zero rows and zero
columns, strictly copositive.

Remark 7. In determining whether a 3×3 partial C+ matrix
has a C+ completion or whether a conventional 3 × 3 matrix
is C+, Lemma 3 or Theorem 4 is more useful than Corollary
6.

Example 8. Consider the partial C+ matrix B = 1 2 ?
2 1 −1
? −1 1

. Appealing to Lemma 3, we see that B has

no C+ completion.

The copositive-plus matrix completion problem

To solve the C+ matrix completion problem with specified
main diagonal, we will need some concepts from graph the-
ory. See Johnson (1990) for a similar study of the positive
definite matrix completion problem.
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We follow Golumbic (1980) for terminology and results
needed from graph theory. An (undirected) graph is a pair
G = (V, E) in which V , the vertex set, is finite and E, the
edge set, is a collection of two-element subsets of V . A ver-
tex u is adjacent to a vertex v if {u, v} ∈ E. A complete
graph is one with the property that every pair of distinct ver-
tices is adjacent. A path [v1, . . . , vk], in which v1, . . . , vk are
distinct, is a sequence of vertices such that {v j, v j+1} ∈ E for
j = 1, . . . , k−1; in this case, the length of the path [v1, . . . , vk]
is k − 1. If W ⊂ V , the subgraph induced by W is the graph
G[W] = (W, E[W]) in which E[W] = {{x, y} ∈ E : x, y ∈ W}.
An induced path in G is a path that is an induced subgraph
of G. It is trivial to see that the connected graphs with no
induced path of length two are the complete graphs.

Given a partial symmetric matrix A with specified main
diagonal, we can associate a graph G = (V, E) in which
V = {1, . . . , n} and E = {{i, j} : ai j is specified and i , j}.
In the remainder of the paper, G is a graph on n vertices with
n > 3.

We will need the following lemma to solve the C+ matrix
completion problem with specified main diagonal.

Lemma 9. If the graph G contains an induced path of length
2, then there is a partial copositive-plus matrix A with graph
G that has no copositive-plus completion.

Proof. Let G contain an induced path of length 2, say
[u, v,w]. Note that [u, v,w] is the graph of the partial C+

matrix B in Example 8. Let A be any partial C+ matrix with
graph G and a principal submatrix B. Since B is not com-
pletable to a C+ matrix, neither is A by inheritance. �

A graph G contains no induced path of length 2 if and only
if G is the union of pairwise disjoint complete subgraphs.
This fact leads to the following characterization of patterns
that ensure C+ completability.

Theorem 10. Every partial copositive-plus matrix A with
graph G has a copositive-plus completion if and only if G is
the union of pairwise disjoint complete subgraphs.

Proof. Lemma 9 establishes necessity. For sufficiency, just
assign 0 to each unspecified off-diagonal entry; the resulting
matrix is a direct sum of C+ matrices and, hence, it is C+

also. �

Finally, we consider the general copositive-plus matrix
completion problem (with some unspecified diagonal en-
tries). The following lemma is useful.

Lemma 11. (Hogben, 2007, Corollary 3) Every partial
strictly copositive matrix can be completed to a strictly
copositive matrix.

We have the following two results of sufficient condi-
tions and necessary conditions, respectively, about the com-
pletability of a partial C+ matrix.

Theorem 12. If A is partial C+ matrix that has either no
specified diagonal entry or exactly one positive specified di-
agonal entry, then A has a C+ completion.

Proof. Suppose A is a partial C+ matrix that has either no
specified diagonal entry or exactly one positive specified di-
agonal entry. Then A is a partial C∗ matrix and so, by Lemma
11, it has a C∗ (and hence C+) completion. �

Theorem 13. If A is partial C+ matrix that has a C+ com-
pletion, then

(1) the row (column) containing a 0 diagonal entry must
be zero row (column);

(2) every 3× 3 principal submatrix of A that is of the form ? α β
α 1 −1
β −1 1

, after permutation and positive diag-

onal scaling, must have α + β = 0.

Proof. Since A has a C+ completion, every principal subma-
trix of A is C+ completable. The two necessary conditions
then follow from Lemma 1 and Lemma 3, respectively. �

It seems that it is not easy to find sufficient and necessary
conditions for a partial C+ matrix to be C+ completable. We
leave this as an open problem.
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