The Copositive-Plus Matrix Completion Problem

Xuhua Liu
Department of Mathematics
The University of Tennessee at Chattanooga
Chattanooga, TN 37403, USA

Ronald L. Smith
Department of Mathematics
The University of Tennessee at Chattanooga
Chattanooga, TN 37403, USA

Abstract

We derive a useful characterization of 3-by-3 copositive-plus matrices in terms of their entries, and use it to solve the copositive-plus matrix completion problem in the case of specified diagonal by showing that a partial copositive-plus matrix with graph G has a copositive-plus completion if and only if G is a pairwise disjoint union of complete subgraphs.

Introduction

In this article, the superscript " T " denotes transposition and \mathbb{R}^{n} the set of all real n-vectors. A vector $x=$ $\left(x_{1}, \ldots, x_{n}\right)^{\top} \in \mathbb{R}^{n}$ is said to be nonnegative, denoted by $x \geqslant 0$, if $x_{i} \geqslant 0$ for all $i=1, \ldots, n$.

Let S_{n} denote the set of all $n \times n$ real symmetric matrices. A matrix $A \in S_{n}$ is said to be
(1) (real) positive semidefinite if $x^{\top} A x \geqslant 0$ for all $x \in \mathbb{R}^{n}$;
(2) copositive if $x^{\top} A x \geqslant 0$ for all $x \geqslant 0$;
(3) copositive-plus if A is copositive and if $x^{\top} A x=0$ with $x \geqslant 0$ implies $A x=0$;
(4) strictly copositive if $x^{\top} A x>0$ for all nonzero $x \geqslant 0$.

Positive semidefinite matrices are copositive by definition. Moreover, if $A \in S_{n}$ is positive semidefinite and $x \in \mathbb{R}^{n}$, then $x^{\top} A x=0$ if and only if $A x=0$ (Horn \& Johnson 1985, p.400, Problem 1). A parallel comparison of positive semidefinite matrices and copositive-plus matrices was made in Cottle, Habetler, and Lemke (1970b).

Following Cottle, Habetler, and Lemke (1970a), we denote the class of copositive (copositive-plus, strictly copositive, resp.) matrices by $C\left(C^{+}, C^{*}\right.$, resp.). Obviously, $C^{*} \subset C^{+} \subset C$. Each of the three classes of copositive matrices has three important properties: inheritance, closure under permutation similarity, and closure under positive diagonal congruence, i.e., if S denotes any class of copositive matrices and $A \in S$, then every principal submatrix of A is in $S, P^{\top} A P \in S$ for any permutation matrix P, and $D A D \in S$ for any positive diagonal matrix D.

Copositive matrices have applications in control theory, optimization modeling, linear complementarity problems, and many other branches of pure and applied mathematics

[^0](cf. Hiriart-Urruty and Seeger (2010)). See recent surveys Hiriart-Urruty and Seeger (2010) and Ikramov and Savel'eva (2000) on copositive matrices and references therein.

A partial matrix is one in which some entries are specified, while the remaining entries are unspecified and free to be chosen. A completion of a partial matrix is a choice of values for the unspecified entries. A matrix completion problem asks which partial matrices have completions with a desired property. A partial $C^{+}\left(C, C^{*}\right.$, resp.) matrix is a real symmetric partial matrix such that every fully specified principal submatrix is $C^{+}\left(C, C^{*}\right.$, resp.). The C and C^{*} matrix completion problems were solved in Hogben, Johnson, and Reams (2005) and Hogben (2007), but the C^{+}matrix completion problem has remained open.

Our main interest here is in the following C^{+}matrix completion problem: Under the assumption that the main diagonal is specified, which patterns for the specified entries of a partial C^{+}matrix ensure that each partial matrix with one of these patterns can be completed to a C^{+}matrix?

In Section 2, we give a new characterization of 3×3 copositive-plus matrices in terms of their entries. In Section 3, this result is used to solve the C^{+}matrix completion problem listed above.

A characterization of copositive-plus matrices of order $n \leqslant 3$

We begin with the following characterization of 2×2 copositive-plus matrices in terms of their entries. We omit the proof since it follows from straightforward computation.
Lemma 1. The real symmetric matrix $\left[\begin{array}{ll}a & b \\ b & d\end{array}\right]$ is copositive-plus if and only if the following conditions are satisfied:
(1) $a \geqslant 0$ and $d \geqslant 0$,
(2a) $b=0$ when $a d=0$,
(2b) $b \geqslant-\sqrt{a d}$ when $a d>0$.

Moreover, it is strictly copositive if and only if $a>0, d>0$, and $b>-\sqrt{a d}$.

Combining (Hadeler 1983, Theorem 4) and (Simpson \& Spector, 1983, Theorem 2.2), we have the following characterization of 3×3 copositive matrices, which will be useful in characterizing 3×3 copositive-plus matrices in terms of their entries.
Lemma 2. The real symmetric matrix $A=\left[\begin{array}{lll}a & b & s \\ b & d & c \\ s & c & e\end{array}\right]$ is copositive if and only if the following conditions are satisfied:
(1) $a \geqslant 0, d \geqslant 0, e \geqslant 0$,
(2) $b \geqslant-\sqrt{a d}, c \geqslant-\sqrt{d e}, s \geqslant-\sqrt{a e}$,
(3) $\sqrt{a d e}+b \sqrt{e}+c \sqrt{a}+s \sqrt{d}+$

$$
+\sqrt{2(b+\sqrt{a d})(c+\sqrt{d e})(s+\sqrt{a e})} \geqslant 0 .
$$

Moreover, A is strictly copositive if and only if all the above conditions are satisfied with strict inequality. If $\sqrt{a d e}+$ $b \sqrt{e}+c \sqrt{a}+s \sqrt{d} \leqslant 0$, Condition (3) is equivalent to $\operatorname{det} A \geqslant 0$.

The following characterization of 3×3 copositive-plus matrices with unit diagonal will be crucial in the proof of the main results.
Lemma 3. The matrix $A=\left[\begin{array}{ccc}1 & \alpha & \beta \\ \alpha & 1 & \gamma \\ \beta & \gamma & 1\end{array}\right]$ is copositive-plus if and only if
(1) it is permutation similar to $\left[\begin{array}{rrr}1 & \alpha & -\alpha \\ \alpha & 1 & -1 \\ -\alpha & -1 & 1\end{array}\right]$ with

$$
-1 \leqslant \alpha \leqslant 1, \text { or }
$$

(2) $\alpha, \beta, \gamma>-1$ and

$$
1+\alpha+\beta+\gamma+\sqrt{2(1+\alpha)(1+\beta)(1+\gamma)} \geqslant 0
$$

Proof. Since $C^{+} \subset C$, by Lemma 2 we may assume that $\alpha, \beta, \gamma \geqslant-1$ and

$$
\begin{equation*}
1+\alpha+\beta+\gamma+\sqrt{2(1+\alpha)(1+\beta)(1+\gamma)} \geqslant 0 \tag{1}
\end{equation*}
$$

Denote $Q(\mathbf{v})=: \mathbf{v}^{\top} A \mathbf{v}$ for $\mathbf{v}=(x, y, z)^{\top} \geqslant 0$. We consider the following two cases:

Case 1: at least one of α, β, γ is -1 . Then after applying permutation similarity, we can assume $\gamma=-1$. Then (1) reduces to $\alpha+\beta \geqslant 0$. We claim that $A \in C^{+}$if and only if $\alpha+\beta=0$. Note that

$$
\begin{aligned}
Q(\mathbf{v}) & =x^{2}+y^{2}+z^{2}+2 \alpha x y+2 \beta x z-2 y z \\
& =x^{2}+(y-z)^{2}+2 \alpha x(y-z)+2(\alpha+\beta) x z \\
& =(\alpha x+y-z)^{2}+\left(1-\alpha^{2}\right) x^{2}+2(\alpha+\beta) x z .
\end{aligned}
$$

If $\alpha+\beta=0$, then $Q(\mathbf{v})=0$ if and only if

$$
\alpha x+y-z=0 \quad \text { and } \quad\left(1-\alpha^{2}\right) x=0
$$

i.e., if and only if

$$
\begin{cases}x+\alpha(y-z)=0 & \text { if } \alpha= \pm 1 \\ x=0 \text { and } y=z & \text { if } \alpha \neq \pm 1\end{cases}
$$

i.e., if and only if $A \mathbf{v}=0$. Hence, $A \in C^{+}$.

On the other hand, if $\alpha+\beta \neq 0$, then $Q(\mathbf{v})=0$ and $A \mathbf{v}=(\alpha+\beta, 0,0)^{\top}$ for $\mathbf{v}=(0,1,1)^{\top}$, hence $A \notin C^{+}$. Note that $\alpha+\beta=0$ and $\alpha, \beta \geqslant-1$ imply $-1 \leqslant \alpha, \beta \leqslant 1$.

Case 2: $\alpha, \beta, \gamma>-1$. We claim that $A \in C^{+}$if and only if (1) holds. Since $A \in C^{*}$ if and only if strict inequality in (1) holds, it remains to show that $A \in C^{+}$if

$$
\begin{equation*}
1+\alpha+\beta+\gamma+\sqrt{2(1+\alpha)(1+\beta)(1+\gamma)}=0 \tag{2}
\end{equation*}
$$

which implies that $1+\alpha+\beta+\gamma \leqslant 0$. Since we assume $\alpha, \beta, \gamma>-1$, it follows that

$$
\begin{equation*}
-1<\alpha, \beta, \gamma<1 \tag{3}
\end{equation*}
$$

Moreover, we have $\operatorname{det} A=0$ by Lemma 2 Now that

$$
\begin{equation*}
1+2 \alpha \beta \gamma-\alpha^{2}-\beta^{2}-\gamma^{2}=\operatorname{det} A=0 \tag{4}
\end{equation*}
$$

we then have

$$
\begin{align*}
& \alpha \gamma-\beta=\sqrt{\left(1-\alpha^{2}\right)\left(1-\gamma^{2}\right)} \geqslant 0 \tag{5}\\
& \alpha \beta-\gamma=\sqrt{\left(1-\alpha^{2}\right)\left(1-\beta^{2}\right)} \geqslant 0 \tag{6}\\
& \beta \gamma-\alpha=\sqrt{\left(1-\beta^{2}\right)\left(1-\gamma^{2}\right)} \geqslant 0 \tag{7}
\end{align*}
$$

By solving the linear equation $A \mathbf{v}=0$, we know that every solution is a scalar multiple of $\left(\alpha \gamma-\beta, \alpha \beta-\gamma, 1-\alpha^{2}\right)^{\top}$, i.e., a scalar multiple of $\left(\sqrt{1-\gamma^{2}}, \sqrt{1-\beta^{2}}, \sqrt{1-\alpha^{2}}\right)^{\top}$.

Now we write

$$
\begin{aligned}
Q(\mathbf{v})= & x^{2}+y^{2}+z^{2}+2 \alpha x y+2 \beta x z+2 \gamma y z \\
= & p\left(\frac{x}{\sqrt{1-\gamma^{2}}}-\frac{y}{\sqrt{1-\beta^{2}}}\right)^{2}+q\left(\frac{x}{\sqrt{1-\gamma^{2}}}-\frac{z}{\sqrt{1-\alpha^{2}}}\right)^{2} \\
& +r\left(\frac{y}{\sqrt{1-\beta^{2}}}-\frac{z}{\sqrt{1-\alpha^{2}}}\right)^{2} \\
= & p(\hat{x}-\hat{y})^{2}+q(\hat{x}-\hat{z})^{2}+r(\hat{y}-\hat{z})^{2},
\end{aligned}
$$

where by (4), (5), (6), and (7)

$$
\begin{equation*}
p=-\alpha \sqrt{\left(1-\beta^{2}\right)\left(1-\gamma^{2}\right)}=\alpha(\alpha-\beta \gamma)=\frac{1+\alpha^{2}-\beta^{2}-\gamma^{2}}{2} \tag{8}
\end{equation*}
$$

$$
\begin{equation*}
q=-\beta \sqrt{\left(1-\alpha^{2}\right)\left(1-\gamma^{2}\right)}=\beta(\beta-\alpha \gamma)=\frac{1+\beta^{2}-\alpha^{2}-\gamma^{2}}{2} \tag{9}
\end{equation*}
$$

$$
\begin{equation*}
r=-\gamma \sqrt{\left(1-\alpha^{2}\right)\left(1-\beta^{2}\right)}=\gamma(\gamma-\alpha \beta)=\frac{1+\gamma^{2}-\alpha^{2}-\beta^{2}}{2} . \tag{10}
\end{equation*}
$$

From (2) and (3), we see that at most one of α, β, γ is nonnegative. If $-1<\alpha, \beta, \gamma \leqslant 0$, then $p, q, r \geqslant 0$ and hence $Q(\mathbf{v})=0$ if and only if $\hat{x}=\hat{y}=\hat{z}$, i.e., $A \mathbf{v}=0$, hence $A \in C^{+}$. If exactly one of α, β, γ is positive, say $-1<\beta, \gamma<0<\alpha<1$ and so $-1<p<0<q, r<1$, we claim that $Q(\mathbf{v})=0$ if and only if $\hat{x}=\hat{y}=\hat{z}$, i.e., $A \mathbf{v}=0$.

We first note that $p+q=1-\gamma^{2}>0$, and $p+r=1-\beta^{2}>0$ by (8), (9) and (10). Then it is easy to see that $Q(\mathbf{v})>0$ if exactly two of $\hat{x}, \hat{y}, \hat{z}$ are equal. It remains to show that $Q(\mathbf{v})>0$ if $\hat{x}, \hat{y}, \hat{z}$ are distinct.

Since $p<0, p+q>0$, and $p+r>0$, we assume that $|\hat{x}-\hat{y}|=|\hat{x}-\hat{z}|+|\hat{y}-\hat{z}|$, i.e., \hat{z} is between \hat{x} and \hat{y} (The other two cases are trivial. For example, if $|\hat{x}-\hat{z}|=|\hat{x}-\hat{y}|+|\hat{y}-\hat{z}|$, then $\left.Q(\mathbf{v})>p(\hat{x}-\hat{y})^{2}+q(\hat{x}-\hat{z})^{2}>(p+q)(\hat{x}-\hat{y})^{2}>0\right)$. Denote $u=:|\hat{x}-\hat{z}|>0$ and $v=:|\hat{y}-\hat{z}|>0$. Then

$$
\begin{aligned}
Q(\mathbf{v})= & p(u+v)^{2}+q u^{2}+r v^{2} \\
= & (p+q) u^{2}+(p+r) v^{2}+2 p u v \\
= & \left(1-\gamma^{2}\right) u^{2}+\left(1-\beta^{2}\right) v^{2}+2 \alpha(\alpha-\beta \gamma) u v \\
= & \left(\sqrt{1-\gamma^{2}} u-\sqrt{1-\beta^{2}} v\right)^{2} \\
& +2\left(\sqrt{\left(1-\beta^{2}\right)\left(1-\gamma^{2}\right)}-\alpha(\beta \gamma-\alpha)\right) u v \\
= & \left(\sqrt{1-\gamma^{2}} u-\sqrt{1-\beta^{2}} v\right)^{2}+2(1-\alpha)(\beta \gamma-\alpha) u v(\text { by (7) }) \\
> & 0
\end{aligned}
$$

This completes the proof.
The following result characterizes 3×3 copositive-plus matrices in terms of their entries.
Theorem 4. A real symmetric matrix A of order 3 is copositive-plus if and only if A is permutation similar to one of the following forms:
(1) $\left[\begin{array}{lll}a & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$ with $a \geqslant 0$,
(2) $\left[\begin{array}{lll}a & b & 0 \\ b & d & 0 \\ 0 & 0 & 0\end{array}\right]$ with $a, d>0$ and $b \geqslant-\sqrt{a d}$,
(3) $\left[\begin{array}{lll}a & b & s \\ b & d & c \\ s & c & e\end{array}\right]$ with $a, d, e>0$ and
$c=-\sqrt{d e},-\sqrt{a d} \leqslant b \leqslant \sqrt{a d},-\sqrt{a e} \leqslant s \leqslant \sqrt{a e}$, and $b \sqrt{e}+s \sqrt{d}=0$,
(4) $\left[\begin{array}{lll}a & b & s \\ b & d & c \\ s & c & e\end{array}\right]$ with $a, d, e>0$ and

$$
c>-\sqrt{d e}, b>-\sqrt{a d}, s>-\sqrt{a e}, \text { and }
$$

$$
\sqrt{a d e}+b \sqrt{e}+c \sqrt{a}+s \sqrt{d}
$$

$$
+\sqrt{2(b+\sqrt{a d})(c+\sqrt{d e})(s+\sqrt{a e})} \geqslant 0
$$

Proof. Let $A=\left[\begin{array}{lll}a & b & s \\ b & d & c \\ s & c & e\end{array}\right]$ be real symmetric with nonnegative diagonal entries. According to Lemma 1 and the inheritance property of C^{+}matrices, the rows and columns containing a zero diagonal entry are zero. Therefore, if ade $=0$, then $A \in C^{+}$if and only if A is in Form (1) or Form (2), up to permutation similarity. On the other hand, if $a, d, e>0$, then $A \in C^{+}$if and only if $\left[\begin{array}{ccc}1 & \alpha & \beta \\ \alpha & 1 & \gamma \\ \beta & \gamma & 1\end{array}\right] \in C^{+}$, since
$A=\left[\begin{array}{ccc}\sqrt{a} & 0 & 0 \\ 0 & \sqrt{d} & 0 \\ 0 & 0 & \sqrt{e}\end{array}\right]\left[\begin{array}{ccc}1 & \alpha & \beta \\ \alpha & 1 & \gamma \\ \beta & \gamma & 1\end{array}\right]\left[\begin{array}{ccc}\sqrt{a} & 0 & 0 \\ 0 & \sqrt{d} & 0 \\ 0 & 0 & \sqrt{e}\end{array}\right]$,
when $\alpha=\frac{b}{\sqrt{a d}}, \beta=\frac{s}{\sqrt{a e}}, \gamma=\frac{c}{\sqrt{d e}}$. The proof is then completed by applying Lemma 3

Remark 5. A matrix having Form (3) in Theorem 4 corresponds to a matrix having Form (1) in Lemma 3, while one having Form (4) with the following equality

$$
\begin{equation*}
\sqrt{a d e}+b \sqrt{e}+c \sqrt{a}+s \sqrt{d}+\sqrt{2(b+\sqrt{a d})(c+\sqrt{d e})(s+\sqrt{a e})}=0 \tag{11}
\end{equation*}
$$

corresponds to one having Form (2) in Lemma 3 with (2).
As seen from the proof of Lemma 3, a matrix having Form (3) in Theorem 4 or Form (4) satisfying (11) is positive semidefinite (its determinant is 0). This yields the following characterization of C^{+}matrices of order no more than 3 .

Corollary 6. Väliaho 1986, Theorem 5.4) A matrix $A \in S_{n}$ with $n \leqslant 3$ is copositive-plus if and only if it is positive semidefinite or, after deleting the possible zero rows and zero columns, strictly copositive.

Remark 7. In determining whether a 3×3 partial C^{+}matrix has a C^{+}completion or whether a conventional 3×3 matrix is C^{+}, Lemma 3 or Theorem 4 is more useful than Corollary 6

Example 8. Consider the partial C^{+}matrix $B=$ $\left[\begin{array}{rrr}1 & 2 & ? \\ 2 & 1 & -1 \\ ? & -1 & 1\end{array}\right]$. Appealing to Lemma 3 3. we see that B has no C^{+}completion.

The copositive-plus matrix completion problem

To solve the C^{+}matrix completion problem with specified main diagonal, we will need some concepts from graph theory. See Johnson (1990) for a similar study of the positive definite matrix completion problem.

We follow Golumbic (1980) for terminology and results needed from graph theory. An (undirected) graph is a pair $G=(V, E)$ in which V, the vertex set, is finite and E, the edge set, is a collection of two-element subsets of V. A vertex u is adjacent to a vertex v if $\{u, v\} \in E$. A complete graph is one with the property that every pair of distinct vertices is adjacent. A path $\left[v_{1}, \ldots, v_{k}\right]$, in which v_{1}, \ldots, v_{k} are distinct, is a sequence of vertices such that $\left\{v_{j}, v_{j+1}\right\} \in E$ for $j=1, \ldots, k-1$; in this case, the length of the path $\left[v_{1}, \ldots, v_{k}\right]$ is $k-1$. If $W \subset V$, the subgraph induced by W is the graph $G[W]=(W, E[W])$ in which $E[W]=\{\{x, y\} \in E: x, y \in W\}$. An induced path in G is a path that is an induced subgraph of G. It is trivial to see that the connected graphs with no induced path of length two are the complete graphs.

Given a partial symmetric matrix A with specified main diagonal, we can associate a graph $G=(V, E)$ in which $V=\{1, \ldots, n\}$ and $E=\left\{\{i, j\}: a_{i j}\right.$ is specified and $\left.i \neq j\right\}$. In the remainder of the paper, G is a graph on n vertices with $n \geqslant 3$.

We will need the following lemma to solve the C^{+}matrix completion problem with specified main diagonal.

Lemma 9. If the graph G contains an induced path of length 2 , then there is a partial copositive-plus matrix A with graph G that has no copositive-plus completion.

Proof. Let G contain an induced path of length 2, say [u, v, w]. Note that $[u, v, w]$ is the graph of the partial C^{+} matrix B in Example 8 Let A be any partial C^{+}matrix with graph G and a principal submatrix B. Since B is not completable to a C^{+}matrix, neither is A by inheritance.

A graph G contains no induced path of length 2 if and only if G is the union of pairwise disjoint complete subgraphs. This fact leads to the following characterization of patterns that ensure C^{+}completability.

Theorem 10. Every partial copositive-plus matrix A with graph G has a copositive-plus completion if and only if G is the union of pairwise disjoint complete subgraphs.

Proof. Lemma 9 establishes necessity. For sufficiency, just assign 0 to each unspecified off-diagonal entry; the resulting matrix is a direct sum of C^{+}matrices and, hence, it is C^{+} also.

Finally, we consider the general copositive-plus matrix completion problem (with some unspecified diagonal entries). The following lemma is useful.

Lemma 11. Hogben 2007 Corollary 3) Every partial strictly copositive matrix can be completed to a strictly copositive matrix.

We have the following two results of sufficient conditions and necessary conditions, respectively, about the completability of a partial C^{+}matrix.

Theorem 12. If A is partial C^{+}matrix that has either no specified diagonal entry or exactly one positive specified diagonal entry, then A has a C^{+}completion.

Proof. Suppose A is a partial C^{+}matrix that has either no specified diagonal entry or exactly one positive specified diagonal entry. Then A is a partial C^{*} matrix and so, by Lemma 11. it has a C^{*} (and hence C^{+}) completion.

Theorem 13. If A is partial C^{+}matrix that has a C^{+}completion, then
(1) the row (column) containing a 0 diagonal entry must be zero row (column);
(2) every 3×3 principal submatrix of A that is of the form $\left[\begin{array}{rrr}? & \alpha & \beta \\ \alpha & 1 & -1 \\ \beta & -1 & 1\end{array}\right]$, after permutation and positive diagonal scaling, must have $\alpha+\beta=0$.

Proof. Since A has a C^{+}completion, every principal submatrix of A is C^{+}completable. The two necessary conditions then follow from Lemma 1 and Lemma 3 , respectively.

It seems that it is not easy to find sufficient and necessary conditions for a partial C^{+}matrix to be C^{+}completable. We leave this as an open problem.

References

Cottle, R. W., Habetler, G. J., \& Lemke, C. E. (1970a). On classes of copositive matrices. Linear Algebra Appl., 3, 295-310.
Cottle, R. W., Habetler, G. J., \& Lemke, C. E. (1970b). Quadratic forms semi-definite over convex cones. In Proceedings of the princeton symposium on mathematical programming (pp . 551-565). Princeton Univ. Press.
Golumbic, M. C. (1980). Algorithmic graph theory and perfect graphs. Academic Press.
Hadeler, K. P. (1983). On copositive matrices. Linear Algebra Appl., 49, 79-89.
Hiriart-Urruty, J.-B., \& Seeger, A. (2010). A variational approach to copositive matrices. SIAM Rev., 52, 593-629.
Hogben, L. (2007). The copositive completion problem: unspecified diagonal entries. Linear Algebra Appl., 420, 160-162.
Hogben, L., Johnson, C. R., \& Reams, R. (2005). The copositive completion problem: unspecified diagonal entries. Linear Algebra Appl., 420, 160-162.
Horn, R. A., \& Johnson, C. R. (1985). Matrix analysis. Cambridge Univ. Press.
Ikramov, K. D., \& Savel'eva, N. V. (2000). Conditionally definite matrices. J. Math. Sci., 98, 1-50.
Johnson, C. R. (1990). Matrix completion problems: a survey. Proc. Sympos. Appl. Math. Am. Math. Soc., 40, 171-198.
Simpson, H. C., \& Spector, S. J. (1983). On copositive matrices and strong ellipticity for isotropic elastic materials. Arch. Rational Mech. Anal., 84, 55-68.
Väliaho, H. (1986). Criteria for copositive matrices. Linear Algebra Appl., 81, 19-34.

[^0]: Corresponding Author Email: Roy-Liu@utc.edu

