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Minimizing Average Risk with Short-Term Futures Hedging
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In this paper, we study the strategies to minimize risk in long-term hedging with short-term fu-
tures contracts. We re-evaluate these strategies in Glasserman (2001) by analyzing the average
risk.

Introduction

Consider the following market model that has been dis-
cussed in Culp and Miller (1995), Glasserman (2001),
Larcher and Leobacher (2003) and Wu, Yu, and Zheng
(2011):

A firm commits itself to supplying a commodity with fixed
quantity q and price at at time t ∈ [0,T ]. Assume that the
market price of the commodity S t satisfies dS t = µdt+σdBt,
where µ is the drift coefficient, σ is the diffusion coefficient,
Bt is the standard Brownian motion, and interest rate r = 0.
If the hedging strategy is to purchase continuously Gt short
term futures with life time dt at time t, then the unhedged
cash flow and payoff from the hedging strategy over the time
interval [t, t + dt] satisfies

dCt = q(at − S t)dt

dHt = Gtµdt + Gt(σ − bt)dBt

where bt is the basis of the futures.
If at, µ,Gt, bt are all deterministic, assuming q = 1,T = 1

and σ be a constant, we can have:

Ct + Ht − E(Ct + Ht) =

∫ t

0
σ(s − t + Gs)dBs

Var(Ct + Ht) = σ2
∫ t

0
(s − t + Gs)2ds

where t ∈ [0, 1].
We call the quantity Var(Ct+Ht) the spot risk of the corre-

sponding hedging strategy Gt. Clearly, if Gs = 0, there is no
hedge, Var(Ct + Ht) = 1

3σ
2t3, t ∈ [0, 1]. If Gs = 1 − s, called

the rolling stack hedge, Var(Ct + Ht) = σ2t(t− 1)2, t ∈ [0, 1].
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Glasserman’s work

Glasserman studied another two hedging strategies in
Glasserman (2001): fixed horizon and fixed fraction hedges.
For readers’ convenience, we restate his work in details as
follows.

In the fixed horizon hedge, a rolling stack strategy is
performed, not for the whole time interval[0, 1], but only
throughout [0, τ] for 0 < τ < 1. The remaining period of
time is left unhedged. Thus, the strategy is

Gs =

τ − s s ∈ [0, τ]
0 s ∈ (τ, 1]

Without loss of generality, assume σ = 1 and let σt =∫ t
0 (s − t + Gs)2ds.

σ2
t =

 f1(t) t ∈ [0, τ]
f2(t) t ∈ (τ, 1]

where f1(t) =
∫ t

0 (τ− t)2ds, f2(t) =
∫ τ

0 (τ− t)2ds +
∫ t
τ

(s− t)2ds.
Now,

f1(t) = t(τ − t)2 = t3 − 2τt2 + τ2t

f1(0) = f1(τ) = 0

f ′1(t) = 3t2 − 4τt + τ2 = (3t − τ)(t − τ)

f ′1(t) = 0→ t = τ or t =
1
3
τ

Thus, the maximum variance during the hedged portion oc-
curs at t = 1

3τ where f1( 1
3τ) = 4

27τ
3.

We must also consider the variance during the subsequent
unhedged portion of the exposure. Since we are conducting
a rolling stack with a horizon of τ, having no hedge in the
interval τ < t ≤ 1 will result in some terminal risk.

f2(t) = τ(τ − t)2 − (τ − t)3/3

f ′2(t) = 0→ t = τ

1



2 GARCIA & YU

Thus, the maximum variance during the unhedged portion is
the terminal variance.

f2(1) =
2
3
τ3 − τ2 +

1
3

The relative maximum at t = 1
3τ increases when the horizon

is lengthened. Some straightforward calculus shows that the
terminal variance decreases when the horizon is lengthened.
Therefore, the optimal horizon (the one that minimizes the
overall maximum variance) is the one that equates these two
values:

2
3
τ3 − τ2 +

1
3

=
4

27
τ3

Solving numerically: τ∗ ≈ 0.73340.
This results in a maximum variance of f1( 1

3τ
∗) = f2(1) ≈

4
27 (0.73340)3 ≈ 0.05844, a value much lower than that of the
elementary rolling stack strategy.

In the fixed fraction hedge, a modified rolling stack strat-
egy is carried out throughout the whole interval [0, 1] for only
a fraction of the typical stack. That is, for 0 < κ < 1, the
strategy is given by Gs = κ(1 − s).

The spot variance is

σ2
t = h(t) =

∫ t

0
(κ(1 − s) + s − t)2ds

=
1
3

(κ2 + κ + 1)t3 − (κ2 + κ)t2 + κ2t

We can use standard methods to figure out where this
function might take its maximum.

h′(t) = (κ2 + κ + 1)t2 − 2(κ2 + κ)t + κ2 = 0

The general quadratic formula produces the critical points

t1,2 =
κ2 + κ ± κ

3
2

κ2 + κ + 1

The second derivative

h′′(t) = 2(κ2 + κ + 1)t − 2(κ2 + κ)

allows us to determine where the relative maximum occurs.

h′′(t1,2) = 2(κ2 + κ ± κ
3
2 ) − 2(κ2 + κ) = ±2κ

3
2

The second derivative is negative (there is a relative maxi-
mum) at

t2 =
κ2 + κ − κ

3
2

κ2 + κ + 1

The maximum is

h(t2) =
(κ2 + κ − κ

3
2 )3

3(κ2 + κ + 1)2−
(κ2 + κ)(κ2 + κ − κ

3
2 )2

(κ2 + κ + 1)2 +
κ2(κ2 + κ − κ

3
2 )

(κ2 + κ + 1)

It is important that we remember that unlike the traditional
rolling stack strategy, the fixed fraction hedge does not pro-
vide us zero terminal variance. Therefore, if we are looking
for the maximum, we must also consider

h(1) =
1
3
κ2 −

2
3
κ +

1
3

As in the case with the optimal fixed horizon hedge, the
fixed fraction that minimizes the overall maximum variance
is the one that equates these two values. The complex-
looking algebraic expression for the relative maximum at t2
might point to a numerical solution of this equation. How-
ever, an exact solution can actually be found without too
many complications. Let us simplify.

h(t2) =
κ2 + κ − κ

3
2

3(κ2 + κ + 1)2

[
κ4 + κ

7
2 + κ

5
2 + κ2

]
=
κ6 + 2κ

9
2 + κ3

3(κ2 + κ + 1)2

Setting them equal to each other:

κ6 + 2κ
9
2 + κ3

3(κ2 + κ + 1)2 =
1
3
κ2 −

2
3
κ +

1
3

Simplify:
2κ

9
2 + 3κ3 − 1 = 0

We can make the substitution u = κ
3
2 to obtain

2u3 + 3u2 − 1 = 0

which yields the solution u = 1
2 → κ∗ =

(
1
4

) 1
3
≈ 0.62996.

This results in a maximum variance of

h(t2) = h(1) =
1
3

(
1
4

) 2
3

−
2
3

(
1
4

) 1
3

+
1
3
≈ 0.04564

Thus, the optimal fixed fraction hedge leads to lower max-
imum variance than the optimal fixed horizon hedge. Fig-
ure 1 below compares these two strategies to the traditional
rolling stack.

Figure 1. Comparison of the variances of the optimal fixed
horizon, the optimal fixed fraction, and the traditional rolling
stack strategies. The modified strategies offer much lower
maximum variance, with the optimal fraction beating out the
optimal horizon.
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Minimize the average risk

We also mean to analyze the average risk one is exposed
to under these strategies. Indeed, we should expect the mini-
mization of the average risk to give rise to a different optimal
horizon and optimal fraction. We will also be interested in
comparing this minimal average risk to the one exhibited by
the strategies that minimize the maximum variance. As in-
troduced in Larcher and Leobacher (2003), the average risk
for the fixed horizon strategy is given by

A(τ) :=
∫ 1

0
σ2

t dt =

∫ τ

0
f1(t)dt +

∫ 1

τ

f2(t)dt

=

∫ t

0

(
t3 − 2τt2 + τ2t

)
dt +

∫ 1

τ

(
1
3

t3 − τ2t +
2
3
τ3

)
dt

= −
1
6
τ4 +

2
3
τ3 −

1
2
τ2 +

1
12

Using our τ∗ ≈ 0.73340, we get A(τ∗) ≈ 0.02916. However,
from the expression we have just derived, standard methods
will allow us to determine exactly the horizon that minimizes
the average risk.

A′(τ) = −
2
3
τ3 + 2τ2 − τ = 0

τ1,2 =
3
2
±

√
3

2

The only solution in the interval [0, 1] is τ2 = 3
2 −

√
3

2 ≈

0.63397. To confirm it is a minimum we look towards the
second derivative.

A′′(τ) = −2τ2 + 4τ − 1

A′′(τ2) =
√

3 − 1 > 0

Therefore, the horizon that minimizes the average risk is at
τ2 = 3

2 −
√

3
2 ≈ 0.63397, with A(τ2) ≈ 0.02532, about 87% of

the average risk under the horizon τ∗.
For a more detailed comparison, let us look at the maxi-

mal variance that would occur under this horizon. Recall that
under a fixed horizon full hedge the candidates for maximal
variance are

f1

(
1
3
τ

)
=

4
27
τ3 and f2(1) =

2
3
τ3 − τ2 +

1
3

Substituting τ = τ2 we get

f1

(
1
3
τ2

)
≈ 0.03775 and f2(1) ≈ 0.10128

This demonstrates that although this new horizon has a lower
relative maximum at the peak of the hedged portion (at
t = 1

3τ), it almost doubles the overall maximum (at t = 1).

Figure 2. Variances of the optimal fixed horizon and the
fixed horizon that minimizes the average risk.

Let us consider the running risk, R(σ2
t ), of both strategies,

measured by the running maximum variance. i.e.

R(σ2
t ) = sup

0≤s≤t
σ2

s

The running risk of the optimal horizon is

R1(σ2
t ) =

t (τ∗ − t)2 , 0 ≤ t ≤ 1
3τ
∗

4
27 (τ∗)3 , 1

3τ
∗ < t ≤ 1

where τ∗ ≈ 0.73340. The running risk of the average-
minimizing horizon is

R2(σ2
t ) =


t (τ2 − t)2 , 0 ≤ t ≤ 1

3τ2
4
27 (τ2)3 , 1

3τ2 < t < η
1
3 t3 − τ2

2t + 2
3τ

3
2, η ≤ t ≤ 1

where τ2 ≈ 0.63397 and η ≈ 0.86443.
Here, η is obtained numerically by solving the equation,

that f2(η), under the hedging horizon τ2, is equal to the value
of 4

27 (τ2)3.
We see that τ2 produces lower average risk than τ∗ and

also that it has a lower value for the relative maximum
of the hedged portion of the exposure. In order to com-
pare the running risk between the optimal horizon and the
average-minimizing horizon, we need to solve the inequal-
ity R2(σ2

t ) ≤ R1(σ2
t ). Clearly, R1(σ2

t ) and R1(σ2
t ) are non-

decreasing functions and when 0 ≤ t < η, R2(σ2
t ) ≤ R1(σ2

t ).
For η ≤ t ≤ 1, we only need to solve the inequality

1
3

t3 − τ2
2t +

2
3
τ3

2 ≤
4
27

(τ∗)3

Numerically, we get t ≤ 0.91723.
Therefore, not only does τ2 result in lower average risk,

it also leads to lower running risk throughout the majority
of the life of the exposure (around 92%). However, roughly
locking in terminal expected value is an attractive quality in
a hedging strategy, so the increased spot variance under τ2
towards the end of the life of the exposure is a shortcoming.
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Figure 3. Comparison of the running risk between the op-
timal horizon and the average-minimizing horizon as mea-
sured by the running maximum variance. The average-
minimizing horizon only becomes “riskier” after t ≈ 0.917.

Given its characteristics, the hedging horizon τ2 could
have its place among a certain type of investor. For exam-
ple, an investor with a particular concern for liquidity issues
throughout most of the life of the exposure but who will be
expecting significant amounts of revenue near the end of the
contract might be comfortable gambling with the increased
terminal variance.

We will now go through the same analysis on the fixed
fraction hedging strategy. Given that the optimal fixed frac-
tion posted better results than the optimal fixed horizon, it is
not unreasonable to expect that the strategy found by mini-
mizing the average risk under a fixed fraction will be a better
option for our hypothetical investor than the one found under
a fixed horizon.

The average risk for the fixed fraction strategy is given by

A(κ) :=
∫ 1

0
σ2

t dt

=

∫ 1

0

(
1
3

(κ2 + κ + 1)t3 − (κ2 + κ)t2 + κ2t
)

dt

=
1
4
κ2 −

1
4
κ +

1
12

Using our κ∗ ≈ 0.62996, we get A(κ∗) ≈ 0.02506.
Due to the fact that A(κ) is an upwards opening parabola,

we can immediately see that it is minimized by κ2 = 1
2 (where

the vertex is located). This gives the minimum average risk
A

(
1
2

)
= 1

48 ≈ 0.02083, which is approximately equal to
83% of the average risk suffered under the fixed fraction κ∗.
Again, for comparison, let us look at the maximal variance
that would occur under the fixed fraction hedge with κ2. Re-
call that

h(t) =
1
3

(κ2 + κ + 1)t3 − (κ2 + κ)t2 + κ2t

which, under κ2, becomes

h(t) =
7

12
t3 −

3
4

t2 +
1
4

t

We know from previous calculations that the relative maxi-
mum occurs at

t∗2 =
κ2 + κ − κ

3
2

κ2 + κ + 1
=

3 −
√

2
7

≈ 0.22654

Then,

h
(
t∗2
)

=
9 + 4

√
2

588
≈ 0.02493

The other candidate for maximal variance is the end of the
hedge, h(1) = 1

12 ≈ 0.08333. Bearing some resemblance to
our discussion of horizons, the fixed fraction that minimizes
the average risk (κ2 = 1

2 ) reduces the maximal variance at the
local maximum but almost doubles the overall maximum.

Figure 4. Variances of the optimal fixed fraction and the
fixed fraction that minimizes the average risk.

Again, let us consider the running risk of both strategies,
as measured by the running maximum variance. The running
risk of the optimal fixed fraction is

R3(σ2
t ) =

 1
3

(
(κ∗)2 + κ∗ + 1

)
t3 −

(
(κ∗)2 + κ∗

)
t2 + (κ∗)2t, 0 ≤ t ≤ t2

1
3 (κ∗)2 − 2

3κ
∗ + 1

3 , t2 < t ≤ 1

where κ∗ ≈ 0.62996 and t2 ≈ 0.25992.
The running risk of the average-minimizing fraction is

R4(σ2
t ) =


7

12 t3 − 3
4 t2 + 1

4 t, 0 ≤ t ≤ t∗2
9+4
√

2
588 , t∗2 < t < η∗

7
12 t3 − 3

4 t2 + 1
4 t, η∗ ≤ t ≤ 1

where t∗2 = 3−
√

2
7 ≈ 0.22654 and η∗ = 3+

√
2

7 ≈ 0.83263.
We see that κ2 produces lower average risk than κ∗ and

also that it has a lower value for the local maximum. Just
like the case with fixed horizons, we notice that R3(σ2

t ) and
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R4(σ2
t ) are non-decreasing functions. Solve the inequality

R4(σ2
t ) ≤ R3(σ2

t ) numerically to get t ≤ 0.90890.
Therefore, we arrive at a result that mirrors the case with

fixed horizons. Not only does κ2 result in lower average risk,
it also leads to lower running risk throughout the majority of
the life of the exposure (around 91%, as opposed to 92% in
the case of horizons). The main disadvantage of the average-
minimizing strategy, the increased terminal variance, is also
emulated.

Figure 5. above compares the running risk between the
optimal fraction and the average-minimizing fraction as mea-
sured by the running maximum variance. The average-
minimizing fraction only becomes “riskier” after t ≈ 0.909.

The average-minimizing fixed fraction strategy would
definitely be useful for our hypothetical investors. Moreover,
as expected, it performs better than the average-minimizing
fixed horizon. It provides both lower average risk (0.02083

as opposed to 0.02532) and lower running risk throughout
the entire life of the exposure.

Conclusion

By analyzing the average risk, we re-evaluate hedging
strategies in Glasserman (2001). We introduce two new
hedging strategies, avg-minimizing horizon strategy and avg-
minimizing fixed fraction strategy. After comparing the run-
ning risk and spot variance, we suggest that the average-
minimizing fixed fraction strategy would be useful for a hy-
pothetical investor with a particular concern for liquidity is-
sues throughout most of the life of the exposure but who will
be expecting significant amounts of revenue near the end of
the contract.
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