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Classroom Notes: Why is the 4-term polynomial arising from the
ac-method of factoring always factorable?

Noel Sagullo
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Department of Mathematics

The procedure that is often taught for factoring a quadratic polynomial ax2+bx+c with nonzero
integer coefficients has been called the ac-method of factoring (Dugopolski, 2011). Using the
notion of multisets (Bender, 1974; Blizard, 1989), we will prove that the 4-term polynomial
that arises when the ac-method applies always factors by grouping. As a consequence, we will
be able to provide a justification for this factoring procedure.

Introduction

We give the procedure for factoring the quadratic poly-
nomials with integer coefficients often found in beginning
mathematics textbooks.

Procedure for Factoring ax2 + bx + c

1. Find two numbers whose sum is b and whose product
is ac.

2. Replace b by the sum of these two numbers.

3. Factor the resulting 4-term polynomial by grouping.

Using this procedure on 18x2 + 57x + 17, we get ac =

18 · 17 = 2 · 32 · 17. A pair of divisors of ac, 6 and 51, whose
sum equals the coefficient of the middle term, 57, gives us the
4-term polynomial 18x2 + 6x + 51x + 17. Factor by group-
ing then gives us the factorization (6x + 17)(3x + 1). The
question a student might be interested in is why any 4-term
polynomial that arises in this way is factorable by group-
ing. An additional question might be whether the resulting
4-term polynomial is still factorable by grouping had 6x and
51x been commuted. Yet another question might be whether
the absence of a divisor pair adding to the middle coefficient
precludes the existence of linear factors. We hope that in the
course of our exposition, the answers to these questions will
become clear to the student.

Complementary Subsets

Definition 1 (Complementary Subsets). Let U be a set. If
A and C are disjoint subsets of U whose union is U, we say
that A,C is a pair of complementary subsets of U.
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Theorem 1. Let U be a set. If A,C and D1,D2 are pairs of
complementary subsets of U, then A \ D1 = D2 \C.

The proof of Theorem 1 requires a straightforward use of
the definition of set complement and is omitted. As an appli-
cation, we prove that the quadratic factoring procedure works
when ac has no repeated prime factor and all the coefficients
are positive.

Application 1. Let ax2 +bx+c be a polynomial with positive
integer coefficients. Suppose ac has no repeated prime factor.
If there exist two integers d1 and d2 such that d1d2 = ac and
d1 +d2 = b, then ax2 +bx+c is a product of two linear factors
both with integer coefficients.

Proof. Let ac = p1 p2 p3 . . . pn where the pi’s are distinct
primes. If d1d2 = ac and d1 + d2 = b, then ax2 + bx + c =

ax2 + d1x + d2x + c.

Factor by grouping then gives us:

ax2 + d1x + d2x + c = gcd(a, d1)x
( a
gcd(a, d1)

x +
d1

gcd(a, d1)

)
+gcd(c, d2)

( d2

gcd(c, d2)
x +

c
gcd(c, d2)

)
.

(1)
The notation we use for the greatest common divisor of

two integers, say a and b, is gcd(a, b). Note that each of the
four "fractions" in (1) is an integer. Let set A consist of the
prime factors of a; C the prime factors of c; D1 the prime
factors of d1; and D2 the prime factors of d2. We have:

a
gcd(a, d1)

=
∏

x∈A\D1

x (2)

and

d2

gcd(c, d2)
=

∏
x∈D2\C

x. (3)
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Since A \ D1 = D2 \C, we have

a
gcd(a, d1)

=
d2

gcd(c, d2)
. (4)

By a similar use of Theorem 1, we also have:

d1

gcd(a, d1)
=

c
gcd(c, d2)

. (5)

Hence

ax2 + bx + c = ax2 + d1x + d2x + c

= (gcd(a, d1)x + gcd(c, d2))( a
gcd(a, d1)

x +
d1

gcd(a, d1)

)
.

�

Remark 1. If the product is taken over an empty set, then we
take the product to be equal to 1.

The Case of Negative Coefficients

The integers d1 and d2 satisfy d1d2 = ac and d1 + d2 = b.
These requirements determine the signs of d1 and d2 accord-
ing to the signs of the coefficients a, b, and c. The following
table lists each of the cases where one or more of the coeffi-
cients is negative along with the signs, necessarily, of d1 and
d2.

Case a b c Signs of d1 and d2

1) + + − Exactly one of d1 or d2 is negative
2) + − + Both d1 and d2 are negative
3) + − − Exactly one of d1 or d2 is negative
4) − + + Exactly one of d1 or d2 is negative
5) − + − Both d1 and d2 are positive
6) − − + Exactly one of d1 or d2 is negative
7) − − − Both d1 and d2 are negative

In cases 1, 3, 4, and 6, since exactly one of d1 and d2
is negative (and the other positive) and since a and c have
different signs, we may arrange a to have the same sign as
d2 and d1 to have the same sign as c, by switching the values
referred to by d1 and d2 as needed, so that equalities (4) and
(5) in Application 1 hold. Thus the factorization given at the
conclusion of Application 1 holds for these cases.

In case 2, since the pair a, c has the same sign (both positive)
and the pair d1, d2 has the same sign (both negative), and the
signs of these pairs are opposite, we cannot simply switch the
values referred to by d1 and d2 to have the signs agree with a
and c. We need to modify equalities (4) and (5) to

a
gcd(a, d1)

=
−d2

gcd(c, d2)

and

−d1

gcd(a, d1)
=

c
gcd(c, d2)

respectively. In which case the factorization becomes

ax2 + bx + c = ax2 + d1x + d2x + c

= (gcd(a, d1)x − gcd(c, d2))( a
gcd(a, d1)

x +
d1

gcd(a, d1)

)
.

(6)

Case 5 is similar to case 2. Since the pair a, c has the same
sign (both negative) and the pair d1, d2 have the same sign
(both positive), and the signs of these pairs are opposite, we
need to modify equalities (4) and (5) to

−a
gcd(a, d1)

=
d2

gcd(c, d2)

and

d1

gcd(a, d1)
=

−c
gcd(c, d2)

respectively. In which case the factorization becomes as in
(6).

Finally, in case 7, equalities (4) and (5) hold and so the fac-
torization given at the conclusion of Application 1 holds.

Repeated Prime Factors and Multisets

If a = 32 and d1 = 3 then letting A be the set of prime
divisors of a and D1 the set of prime divisors of d1, would
give us A = D1. In which case, the equality in (2) no longer
holds. The main problem is that repeated prime factors are
lost when the sets A and D1 are formed.

Definition 2 (Multiset). A multiset is an unordered collec-
tion of objects in which elements are allowed to repeat. For-
mally, if U is a set and A ⊆ U, then a multiset is a function,
mA, from U to the set of nonnegative integers. The number
mA(u) is the number of occurrences of u. If u ∈ A, then
mA(u) ≥ 1 and mA(u) = 0 otherwise.

Remark 2. For example, if a = 90, then the multiset con-
sisting of the prime divisors of a is {(2, 1), (3, 2), (5, 1)} ∪
{(p, 0) | p is a prime not dividing 90} or more succinctly,
[2, 3, 3, 5]. We use square brackets for multisets to distin-
guish them from sets.

Definition 3 (Multiset Difference and Sum). Let mA and mB

be multisets with A, B ⊆ U. The multiset difference mA − mB

is defined to be max(0,mA(u) − mB(u)) for all u in U. The
multiset sum mA ] mB is defined to be mA(u) + mB(u) for all
u in U.
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Remark 3. For example, [2, 2, 3, 3, 5] − [3, 7] = [2, 2, 3, 5]
and [2, 2, 3, 3, 5] ] [3, 7] = [2, 2, 3, 3, 3, 5, 7].

Definition 4 (Partition of a Multiset). Let mA be a multiset.
A partition of mA is a collection of multisets whose multiset
sum is mA.

Remark 4. For example, the collection consisting of [2, 3]
and [3, 5] is a partition of [2, 3, 3, 5].

Theorem 2. Let mU be a multiset. If mA,mC and mD1 ,mD2

are partitions of mU , then mA − mD1 = mD2 − mC .

Proof. Since
(mA − mD1 )(u) = max(0,mA(u) − mD1 (u))

and

(mD2 − mC)(u) = max(0,mD2 (u) − mC(u)),

it suffices to show

mA(u) − mD1 (u) = mD2 (u) − mC(u)

for all u ∈ U. Indeed, using the definition of multiset sum
along with the hypotheses, we have:

mA(u) − mD1 (u) = (mU(u) − mC(u)) − (mU(u) − mD2 (u))
= mD2 (u) − mC(u).

�

Application 2. The case when ac has repeated prime factors
may now be handled using Theorem 2. Let ax2 + bx + c be
a polynomial with positive integer coefficients. If there exist
two integers d1 and d2 such that d1d2 = ac and d1 + d2 = b,
then ax2 + bx + c is a product of two linear factors both with
integer coefficients.

Remark 5. The interested student may supply his or her
proof. Mutatis mutandis, the proof is the same as the proof
of Application 1. Likewise, the case of negative coefficients
is handled in the same way as it was handled in Application
1.

Finally, we may now state a formal version of the ac-
method factoring procedure.

Theorem 3. Let a, b, and c be nonzero integers. The polyno-
mial ax2 + bx + c is a product of two linear factors, both with
integer coefficients, if and only if there exist two integers d1
and d2 such that d1d2 = ac and d1 + d2 = b.

Remark 6. If ax2 +bx+c = (mx+n)(sx+ t),with m, n, s, and
t, all integers, then multiplying out and equating coefficients,
we see that mt and sn are two integers such that mtsn = ac
and mt + sn = b. The converse is essentially the result of
Application 2.

Summary of Factorization Formulas

The following table gives the factorization of ax2 + bx + c,
with a, b, and c, nonzero integers and for which there exist
integers d1 and d2 satisfying d1d2 = ac and d1 + d2 = b. As
an example, we use the table to factor −18x2 + 171x − 253.

a b c Factorization

+ + + (gcd(a, d1)x + gcd(c, d2))
(

a
gcd(a,d1) x + d1

gcd(a,d1)

)
+ + − (gcd(a, d1)x + gcd(c, d2))

(
a

gcd(a,d1) x + d1
gcd(a,d1)

)
+ − + (gcd(a, d1)x − gcd(c, d2))

(
a

gcd(a,d1) x + d1
gcd(a,d1)

)
+ − − (gcd(a, d1)x + gcd(c, d2))

(
a

gcd(a,d1) x + d1
gcd(a,d1)

)
− + + (gcd(a, d1)x + gcd(c, d2))

(
a

gcd(a,d1) x + d1
gcd(a,d1)

)
− + − (gcd(a, d1)x − gcd(c, d2))

(
a

gcd(a,d1) x + d1
gcd(a,d1)

)
− − + (gcd(a, d1)x + gcd(c, d2))

(
a

gcd(a,d1) x + d1
gcd(a,d1)

)
− − − (gcd(a, d1)x + gcd(c, d2))

(
a

gcd(a,d1) x + d1
gcd(a,d1)

)
Example. For the quadratic polynomial −18x2 + 171x −

253, we have the following:

a = −18 = (−1) · 2 · 32

b = 171
c = −253 = (−1) · 11 · 23

d1 = 33 = 3 · 11
d2 = 138 = 2 · 3 · 23

and

gcd(a, d1) = 3
gcd(c, d2) = 23.

Hence, using the sixth line in the table above, we obtain
the factorization:

−18x2 + 171x − 253 = (gcd(a, d1)x − gcd(c, d2))( a
gcd(a, d1)

x +
d1

gcd(a, d1)

)
= (3x − 23)(−6x + 11).
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