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The strong impact of outliers and leverage points on the ordinary least square (OLS) regression
estimator is studied for a long time. Situations in which a relatively small percentage of the
data has a significant impact on the model may not be acceptable to the user of the model.
A vast literature has been developed to find robust estimators that cope with these “atypical”
observations. Selection of proper methods of estimation in the presence of influential observa-
tions (either outliers or leverage or both) needs to be investigated in further details. This study
is designed to find an appropriate method of estimation in regression analysis in the presence
of these three different types of influential observation. A comparison has been made among
different well known methods of estimation in each situation on the basis of data generated by
Monte Carlo simulation.

Introduction

When the observations Y in the linear model

Y = Xβ + ε

are normally distributed, the method of least squares is a
good parameter estimation procedure in the sense that it pro-
duces an estimator of the parameter vector β that has good
statistical properties. However, there are many situations
where we have evidence that the distribution of the response
variable is (considerably) non-Gaussian and/or there are out-
liers that affect the regression model. A case of considerable
practical interest is one which the observations follow a dis-
tribution that has a longer or heavier tail than normal. These
heavy-tail distributions tend to generate outliers, and these
outliers may have a strong influence on the method of least
squares in the sense that they “pull" the regression equation
too much in their direction (Montgomery, Peck, & Vining,
2012). The purpose of this study is to determine the appropri-
ate estimation methods of regression parameter for this case.

The paper is organized into four sections: the first intro-
duces a brief description of regression model; the second de-
scribes outlier and leverage point,their diagnostic tests, and
their effect on OLS estimation; the third discusses different
robust estimation methods; the fourth gives a comparison
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among OLS method and different robust estimation methods
for different situation through simulated data; and the fourth
discusses the results of the study.

Regression Analysis

Regression Model

Regression analysis is concerned with the study of the de-
pendence of one variable, the dependent variable, on one or
more other variables, the explanatory variables, with a view
of estimating and/or predicting the (population) mean or av-
erage value of the former in terms of the known or fixed (in
repeated sampling) values of the later (Gujarati, 2003).

Suppose that we have a response variable y and a number
of explanatory variables x1,x2,..., xk that may be related to y.
Then regression model for y can be written as

yi = β0 + β1xi1 + β2xi2 + ... + βk xik + εi, (1)

for all i = 1, 2, ..., n.
The β0, β1, · · · , βk are unknown parameters, known as

regression coefficients, and εi are called the error term or
disturbance term. This error term captures all other factors
which influence the dependent variable yi other than the ex-
planatory variable xi. εi is an independent random variable
with zero mean and constant variance.

Equation 1 can be written in a vector form as

y = Xβ + ε, (2)
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where

y =


y1
y2
...

yn

 , X =


1 x11 x12 . . . x1k

1 x21 x22 . . . a2k
...

...
...

. . .
...

1 xn1 xn2 . . . xnk

 ,

β =


β0
β1
...
βk

 , ε =


ε1
ε2
...
εn


Here, y is an n×1 vector of the observations , X is an n×(k+1)
matrix of the levels of the regressor variables, β is a (k+1)×1
vector of the regression coefficients, and ε is an n × 1 vector
of random errors (Drapper & Smith, 1998).

Parameter Estimation

A number of procedures have been developed for param-
eter estimation and inference in linear regression. Among
them ordinary least squares (OLS) is the simplest and very
common method of estimation. The OLS estimator β̂ =

(X′X)−1X′y is obtained by minimizing the error sum of
square

S (β) =

n∑
i=1

ε2
i = ε′ε = (y − Xβ)′(y − Xβ).

Then the model (2) can be estimated by using the esti-
mated parameters β̂.

ŷi = β̂0 + β̂1xi1 + β̂2xi2 + ... + β̂pxip (3)

The deviation of an estimated value of dependent variable
from its observed value (actual value) is known as residual,
which can be obtained as,

ei = yi − ŷi (4)

Outlier and Leverage

In regression analysis, an outlier is an observation with
large residual. In other words, it is an observation whose
dependent variable value is unusual given its value on the
predictor variables. On the other hand, an observation with
an extreme value on a predictor variable is a point with high
leverage. Leverage is a measure of how far an independent
variable deviates from its mean (Rousseeuw, 1984).

A number of methods have been developed to diagnosis
outliers. Among them studentized residuals are frequently
used. Studentized residuals can be obtained as,

Studentized residual =
ei

S (i)
√

1 − hii
(5)

Here S (i) is the standard deviation of the residuals where
ith observation is deleted and hii, leverage, is the ith diagonal
entry in the hat matrix, H = X(X′X)−1X′. If a Studentized
Residual exceed +2 or −2, the observation is an outlier.

Cook’s distance (or Cook’s D) is another measure for di-
agnosing outlier. It can be defined as

Cook’s D =
ei

2

pMSE

( hii

(1 − hii)2

)
(6)

where p is the number of parameter to be estimated and
MSE is the mean square error of the regression model. If
Cook’s D > 4

n , the observation is an outlier.
And leverage is measured by the diagonal elements, hii, of

the hat matrix, H = X(X′X)−1X′. When a leverage > 2p/n
then it is a matter of concern.

Different graphical procedures such as plot of residuals
versus fitted values, plot of leverages versus standardized
residuals are also used to detect outliers and leverage points.

The method of ordinary least squares (OLS) is one of the
most powerful and most popular estimation procedure in re-
gression analysis because of its attractive statistical proper-
ties (e.g., best linear unbiased estimator (BLUE)) and math-
ematical simplicity. But when there are outliers in the data,
these outliers have a strong influence on the method of OLS
in the sense that these few data points change the path of the
regression equation too much in their direction (Figure 1).
As a result the values of the regression coefficients or sum-
mary statistics such as the t or F statistic, R2, and the resid-
ual mean square of OLS estimation become very sensitive to
these outliers.
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Figure 1. Outliers effect on regression model
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One way to deal with this situation is to discard the ex-
treme observations. This will produce a line that passes
nicely through the rest of the data set and one that is more
pleasing from a statistical standpoint. However, we are now
discarding observations simply because it is expedient from
a statistical modeling viewpoint, and this is not a good prac-
tice.

Robust Estimation

A robust estimation procedure is one that dampens the ef-
fect of observations that would be highly influential if least
square are used. The idea of robust estimation is to weigh
the observations differently based on how well behaved these
observations are. A robust estimation procedure should pro-
duce essentially the same results as least squares when the
underlying distribution in normal and there are no outliers.
Roughly speaking, it is a form of weighted and reweighted
least squares regression (Holland & Welsch, 1977). A num-
ber of robust estimation have been introduced in the last three
decades. Among them M estimation and MM estimation are
frequently used.

A robust estimator has two important properties, namely
breakdown point and efficiency. Breakdown point of an es-
timator is the proportion of incorrect observations (i.e. arbi-
trarily large observations) an estimator can handle before giv-
ing an arbitrarily large result. The range of breakdown point
is zero to 0.5 (0 ≤ breakdown point ≤ 0.5) (Rousseeuw &
Leroy, 1987). The smallest possible breakdown point is 1/n,
that is, a single observation can distort the estimator so badly
that it is of no practical use to regression model-builder. The
breakdown point of OLS is 1/n. The fraction of data that are
contaminated by erroneous data typically varies between 1%
to 10%. Therefore, we would generally want the breakdown
point of an estimator to exceed 10%.

On the other hand, the efficiency of a robust estimator can
be thought of as the residual mean square obtained from OLS
divided by the residual mean square from the robust proce-
dure.

M Estimation

M estimation introduced by (Huber, 1973) is the simplest
approach both computationally and theoretically. Instead of
minimizing sum of squares of the residuals, M estimator
minimizes a sum of less rapidly increasing function (weight
function) of the residuals. M estimation procedure solves this
system by using iteratively reweighted least squares (IRLS).

M-estimators are defined to be robust against heavy-tailed
error distribution and non-constant error variance and thus y
outliers but they also implicitly assume that the model ma-
trix X is measure without error. Under these conditions, M
estimates are more efficient than OLS estimates. Under the
Gauss-Markov assumptions, however, M estimates are 95%
as efficient as OLS estimates. But this can be affected by high

leverage points as an identical manner to OLS. Consequently,
the breakdown point of the class of M-estimators is 1/n.

MM estimation

MM estimation was introduced by (Yohai, 1987). It has
simultaneously the following properties: (1) considering the
errors have a normal distribution they are highly efficient and
(2) they have high breakdown point.

MM estimator is based on the following two estimators:
Least Trimmed Squares (LTS) Estimator and S Estimator.
LTS Estimator (Rousseeuw, 1984) is a high breakdown value
method. And S estimator (Rousseeuw & Yohai, 1984)) is
a high breakdown value method with higher statistical effi-
ciency than LTS estimation. As a result MM estimation can
be defined by a two stage procedure:

1. The first step is to compute an initial (consistent) high
breakdown value estimate which may not be efficient.
The procedure provides two kinds of estimates as the
initial estimate, the LTS estimate and the S estimate.

2. The second stage is to compute an M-Estimate of the
error scale using the residuals from the initial (LTS/S)
estimate.

A Comparison Among Different Estimation Methods

We have studied three well known methods of estimations:
OLS estimation, M estimation and MM estimation. These
three estimation procedure do not give similar results for dif-
ferent type of influential observation (either outliers or lever-
age or both), rather for a specific type of influential observa-
tion one gives better performance than others. Our objective
is to identify the best method of estimation for the data with
this specific type of influential observation.

We start by creating a data set of size 1, 000 by randomly
generating three independent explanatory continuous vari-
ables (labeled x1, x2, x3) and an error term (ε) from inde-
pendent univariate normal distributions with zero mean and
unit variance.

A y variable is then generated according to the formula

yi = 10 + 5x1i + 3x2i + 1x3i + εi, (7)

for i = 1, 2, 3, ..., 1, 000. Here, β0 = 10, β1 = 5, β2 = 3, β3 =

1.
Having the true value of the parameters known, we can

compare different methods on the basis of bias (i.e. deviation
of the estimated values from their true values) and standard
error of the estimated parameters.

We then contaminate 10% of dependent variables (which
causes outliers) and use our three methods of estimation
OLS, M, MM to estimate the parameters. For each method
we iterate the procedure 1,000 times and in each iteration we
calculate the bias and standard error of the estimates. We
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take an average of these 1, 000 values. Finally, we make a
comparison among OLS, M, and MM estimation procedures
on the basis of bias and standard error of the estimates.

Similar analysis is also done for the following two situa-
tions (1) data with 1% contamination in one or more explana-
tory variable(s) which causes high leverage, and (2) data with
both 10% contamination in dependent variables and 1% con-
tamination in one or more independent variables.

OLS estimation for the original data

The Table 1 shows OLS estimation for the original data
set, here R2 is 0.9927 and adjusted R2 is 0.9926.

Table 1
ANOVA for original data

Source Df SS MS F value Pr(>F)
Model 3 33884 11294 4.9e+4 <0.01
Residual 996 250 0.25
Total 999 3267474

From Table 1 it can be observed that the overall model
is highly significant, where R2 and adjusted R2 shows that
almost 100% variation of y is explained by the model.

Table 2
OLS estimates for the original data

Coefficients Estimated Bias Standard Pr(>|t|)
(True value) Parameter Error
β0(10) 10.01 −0.001 0.02 < 0.01
β1(5) 4.99 0.004 0.01 < 0.01
β2(3) 2.99 0.001 0.01 < 0.01
β3(1) 0.99 0.007 0.02 < 0.01

From Table 2 we can see that all the parameters are highly
significant, they have negligible bias, and their standard er-
rors are very small.Thus we can say that OLS estimation can
produce very good estimates when data have no influential
observation.

Data with 10% contamination in Y

We contaminate 10% of y values without modifying ex-
planatory variables such that this contaminated values can
cause outliers. Here original y values are taken from indepen-
dent univariate normal distributions with zero mean and unit
variance. And 10% values are generated from independent
univariate normal distributions with mean 200 and variance
2. Obviously, these value produce outliers in the data. Our
goal is to compare OLS, M, MM estimation procedures to
find which method perform better in this situation.

Comparison is made on the basis of bias and standard
error of the parameters, their significancy in the model
(p-value of the t-test) as well as F statistic, and R2 of the
model.

Table 3
OLS estimates for 10% contamination in Y (ANOVA)

Source df SS MS F Value Pr(>F)
Model 3 5453 1818 0.56 0.65
Residual 996 3262021 3275
Total 999 3267474

In this case when we use OLS estimation methods R2 be-
comes 0.0017, which is very very small. Table 3 shows that
a sudden drastic change is occurred in our model: the over-
all model become insignificant (p-value of the F test is very
large) and R2 is very small. From Table reftab4 we can see
that all the variables are insignificant, and the standard errors
and biases are very high.

Table 4
OLS Parameter Estimates

Variables Estimated Pr(>|t|) Standard Bias
Parameter Error

Intercept 29.16 < 0.01 1.81 −19.00
x1 1.31 0.46 1.78 0.491
x2 −0.50 0.78 1.79 0.324
x3 1.80 0.31 1.77 0.103

However when we use the M estimation to estimate the
parameters the model become highly significant (p-value of
the F test is very small) and R2 becomes 0.7703, a reasonably
good figure. Moreover, Table 5 shows that all the variables
are significant, bias and standard error are very small.

Table 5
M estimates for 10% contamination in Y

Variables Estimated Pr(>|t|) Standard Bias
Parameter Error

Intercept 10.22 < 0.01 0.02 −0.09
x1 4.99 < 0.01 0.02 0.001
x2 2.99 < 0.01 0.02 0.001
x3 1.01 < 0.01 0.01 0.001

For the case of MM estimation, like M estimation, the
model is highly significant and R2 is 0.7612. Table 6 shows
that all the variables are significant, bias and standard error
are very small for the case when MM estimation is used.
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Table 6
MM estimates for 10% contamination in Y

Variables Estimated Pr(>|t|) Standard Bias
Parameter Error

Intercept 10.24 < 0.01 0.018 −0.001
x1 4.99 < 0.01 0.018 0.001
x2 2.99 < 0.01 0.018 0.001
x3 1.01 < 0.01 0.017 0.001

Data with 1% Leverage Points

The above experiment has been replicated for data with
1% leverage values. This extreme extreme leverage points
are obtained by generating two random samples of size 10
from two normal population with mean 160 and 170 and vari-
ance 1 and 4 respectively. Then we replace the values in first
10 position in x1i and x2i, without modifying y and x3i. Then
we want to compare OLS, M, MM estimation procedures for
this situation.

When OLS estimation is used for data with leverage we
get the overall model significant with very small R2 (0.0991).
From Table 7 we can see that although all the variables are
significant the standard errors are very high.

Table 7
OLS estimates for data with 1% Leverage

Variables Estimated Pr(>|t|) Standard Bias
Parameter Error

Intercept 10.35 < 0.01 0.173 0.009
x1 1.02 < 0.01 0.121 4.164
x2 −1.07 < 0.01 0.130 3.872
x3 1.12 < 0.01 0.174 −0.005

We observe a small R2 (0.0811) and higher standard error
for the M estimation method too; however, the overall model
and the parameters become significant in terms of p-value
(Table 8).

Table 8
M estimation for data with 1% Leverage

Variables Estimated Pr(>|t|) Standard Bias
Parameter Error

Intercept 10.36 < 0.01 0.18 0.03
x1 0.99 < 0.01 0.13 4.15
x2 −1.05 < 0.01 0.13 3.88
x3 1.08 < 0.01 0.17 0.01

But when MM estimation is used in this situation not only

the overall model and the parameters become highly signifi-
cant but also R2 become high (0.7642). Moreover, standard
errors and bias of the parameters become smaller compare to
OLS and M estimation (Table 9).

Table 9
MM estimation for data with 1% Leverage

Variables Estimated Pr(>|t|) Standard Bias
Parameter Error

Intercept 10.03 < 0.01 0.017 0.001
x1 5.01 < 0.01 0.018 −0.001
x2 2.98 < 0.01 0.018 −0.001
x3 0.98 < 0.01 0.017 0.001

Data with both 1% Leverage Points and 10% contamina-
tion in Y

This study also investigates the appropriate method for
data with both leverage values and outliers. Then Extreme
leverage points are obtained by generating two random sam-
ples of size 10 from two normal population with mean 160,
170 and variance 1 and 4 respectively. Then we replace the
values in the first 10 position in x1i and x2i, without modi-
fying x3i. Again 10% values are generated from independent
normal distribution with mean 200 and variance 2.

If OLS estimation is used for data with both outliers and
leverage points we get all the variables except intercept are
insignificant (Table 10). Again standard errors are very high
and R2 is very small (0.2140).

Table 10
OLS estimation for data with both leverage(1%) and outliers
(10%)

Variables Estimated Pr(>|t|) Standard Bias
Parameter Error

Intercept 19.037 < 0.01 0.873 −9.085
x1 1.298 0.024 0.575 3.850
x2 −0.493 0.423 0.615 3.329
x3 1.091 0.228 0.904 0.093

If M estimation is used although all the variables becomes
significant (Table 11), R2 becomes very small (0.1734) and
standard errors become very large.

But when MM estimation is used in this situation not only
the overall model and the parameters become highly signif-
icant but also the R2 become high (0.7642). Again standard
errors and biases of the parameters are also very small in
comparable to OLS and M estimation (Table 12).
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Table 11
M estimation for data with both leverage (1%) and outliers
(10%)

Variables Estimated Pr(>|t|) Standard Bias
Parameter Error

Intercept 9.897 < 0.01 0.175 −0.980
x1 1.380 < 0.01 0.115 3.708
x2 −0.523 < 0.01 0.123 3.429
x3 1.186 < 0.01 0.181 0.013

Table 12
MM estimation for data with both leverage(1%) and outliers
(10%)

Variables Estimated Pr(>|t|) Standard Bias
Parameter Error

Intercept 9.981 < 0.01 0.018 0.001
x1 5.025 < 0.01 0.017 −0.001
x2 3.021 < 0.01 0.019 −0.001
x3 0.982 < 0.01 0.019 0.001

Conclusion

The primary objective of this study is to identify an ap-
propriate estimation procedure for linear regression model
that can deal with different types of influential observations.
From the above discussion we can make the following three

concluding remarks. First, when outliers present in data OLS
estimation gives very misleading result. But M and MM es-
timation do better job in this situation and give proper result.
Second, for data with leverage points OLS and M estimation
gives misleading outputs, whereas, MM estimation gives ex-
pected results. Finally, OLS and M estimation gives decep-
tive results for data with both leverage points and outliers,
but MM estimation gives proper results in this situation.
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