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We show that a unique Jacobi matrix can be reconstructed from two types of mixed data: 1. its
two eigenpairs, 2. its eigenvalues and the eigenvalues of its submatrix obtained by removing
the first two rows and columns and its 1-1 entry. For the second case, the condition of existence
is provided. In addition, we summarize the equivalent sets of parameters used to recover Jacobi
matrices and show some direct connections.

Introduction

An n × n matrix J is called a Jacobi matrix if it has the
form

J =



b1 a1 0 0 . . .
a1 b2 a2 0 . . .
0 a2 b3 a3 . . .
. . . . . . .
. . . . . . .
. . . . an−2 bn−1 an−1
. . . . 0 an−1 bn


, (1)

where all ai, bi are real. It is called irreducible if ai , 0 for
i = 1, . . . , n − 1. When J is irreducible, its eigenvalues have
multiplicity 1.

Jacobi matrices have a wide range of applications in
physics and engineering, and are closely and non-trivially
linked with many other mathematical objects, such as or-
thogonal polynomials, one dimensional Schrödinger opera-
tors and the Sturm-Liouville problem. In the past couple of
decades, constructing Jacobi matrices from different types of
data was studied intensively. Hochstadt (1974) proved that a
unique Jacobi matrix J with all off diagonal entries positive
can be recovered from the eigenvalues of J and the eigen-
values of the submatrix of J obtained by removing the first
row and column. He later (Hochstadt, 1979) showed that J
can be uniquely determined by its eigenvalues and by its n−1
entries which are those on the left top corner. There have also
been other methods of the reconstruction of Jacobi matrices
from different types of data widely developed (see (Biegler-
König, 1981; Boley & Golub, 1987; Ghanbari, Parvizpour, &
Mirzaei, 2014; Gray & Wilson, 1976)). We construct Jacobi
matrices from two new types of data.

This paper is organized as follows. Firstly, we show that a
Jacobi matrix can be reconstructed from two eigenpairs.We
also provide a condition on the uniqueness of the solution.
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Secondly, we show that a unique Jacobi matrix J is deter-
mined by the eigenvalues of J, the eigenvalues of the sub-
matrix obtained by removing the first two rows and columns
from J and the (1,1) entry of J. At the end, we summarize the
equivalent sets of parameters used to recover Jacobi matrices
and show some direct connections among these sets.

We let J(k,k) denote the submatrix of J as in (1) obtained by
removing the first k rows and columns. Denote the spectrum
of the irreducible Jacobi matrix J by σ(J) = {λ1, λ2, ..., λn}

with λ1 > λ2 > . . . > λn.

Main Result

Theorem 1. Let J be an irreducible Jacobi matrix as in (1).
Given two real numbers λ, µ and two distinct real vectors

u = (u1, u2, . . . , un)T , v = (v1, v2, . . . , vn)T , if
(
uk uk+1
vk vk+1

)
is

invertible for all k = 1, . . . , n − 1, and

an−1 =
unvn(λ − µ)

vnun−1 − unvn−1
,

then a unique Jacobi matrix J can be constructed such that
(λ, u) and (µ, v) are two of its eigenpairs.

Lemma 1. Let J be a Jacobi matrix as in (1). Let λ be an
eigenvalue of J and u = (u1, . . . , un)T be the corresponding
eigenvector. Then

ak−1uk−1 + bkuk + akuk+1 = λuk, (2)

where k = 1, 2, . . . , n, and pn+1 = a0 = an = 0.

Proof. It is due to Ju = λu. �

Lemma 2. Let J be an irreducible Jacobi matrix and u =

(u1, . . . , un)T be an arbitrary eigenvector of J. Then u1 , 0.

Proof. Assume that u1 = 0. Let k = 1 be in (2). Then

b1u1 + a1u2 = λu1

is equivalent to
a1u2 = 0.
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Since J is irreducible, a1 , 0; hence u2 = 0. Let k = 2 be in
(2). Then

a1u1 + b2u2 + a2u3 = λu2

is equivalent to
a2u3 = 0

due to u1 = 0, u2 = 0. Then u3 = 0 since ai , 0. Similarly,
all u′is vanish. It is a contradiction. �

Proof of Theorem 1. Due to Lemma 2, we can assume
that u = (1, u2, u3, . . . , un)T and v = (1, v2, v3, . . . , vn)T and

u2 , v2 because
(
u1 u2
v1 v2

)
is invertible. Then apply Lemma

1. We have a linear system with 2n − 1 unknowns and 2n
equations.

b1 + a1u2 = λ (3.1)
b1 + a1v2 = µ (3.2)
a1 + b2u2 + a2u3 = λu2 (3.3)
a1 + b2v2 + a2v3 = µv2 (3.4)

...
...

an−2un−2 + bn−1un−1 + an−1un = λun−1 (3.(2n − 3))
an−2vn−2 + bn−1vn−1 + an−1vn = µvn−1 (3.(2n − 2))
an−1un−1 + bnun = λun (3.(2n − 1))
an−1vn−1 + bnvn = µvn (3.2n)

The first two equations (3.1) and (3.2) form a sub-system
that only contains a1 and b1:{

b1 + a1u2 = λ (3.1)
b1 + a1v2 = µ (3.2)

Since λ , µ and u2 , v2, b1 and a1 can be solved uniquely.
Then b2 and a2 can be uniquely solved from (3.3) and (3.4)

if and only if
(
u2 u3
v2 v3

)
is invertible. In general, once we have

ak−1, the sub-system{
bkuk + akuk+1 = λuk − ak−1uk−1 (4.1)
bkvk + akvk+1 = µvk − ak−1vk−1 (4.2)

only contains the unknown ak. So bk can be solved uniquely

if and only if
(
uk uk+1
vk vk+1

)
is invertible for k = 1, 2, . . . , n − 1.

Once we solve an−1, the last two equations{
bnun = λun − an−1un−1 (4.11)
bnvn = µvn − an−1vn−1 (4.21)

must be linearly dependent, which is equivalent to

un

vn
=
λun − an−1un−1

µvn − an−1vn−1
,

i.e.
an−1 =

unvn(λ − µ)
vnun−1 − unvn−1

. (5)

The denominator of (5) can be written as det
(
un−1 un

vn−1 vn

)
due

to the assumption. �

Theorem 2. Let {λi}
n
i=1 be the eigenvalues of J and {νi}

n−2
i=1 be

the eigenvalues of J(2,2) where λ1 > . . . > λn and ν1 > . . . >
νn−2. If ∏n

i=1(b1 − λi)∏n−2
j=1 (b1 − ν j)

< 0,

then a unique irreducible Jacobi matrix J with 1 − 1 entry
b1 and positive off diagonal entries can be constructed such
that σ(J) = {λi}

n
i=1, σ(J(2,2)) = {νi}

n−2
i=1

Lemma 3. Let

f (x) = (x − λ1)(x − λ2)...(x − λn),

where λ1 > λ2 > . . . > λn and

g(x) = (x − µ1)(x − µ2)...(x − µn−1),

where µ1 > µ2 > . . . > µn−1. Then

λ1 > µ1 > λ2 > . . . > µn−1 > λn (6)

if and only if there exist unique positive numbers c1, c2, . . . , cn

with
n∑

i=1

ci = 1 such that

g(x) = c1
f (x)

x − λ1
+ c2

f (x)
x − λ2

+ . . . + cn
f (x)

x − λn
. (7)

Proof. Necessary condition: By plugging λi into (7), we
have

ci =
g(λi)∏n

j=1, j,i(λi − λ j)
=

g(λi)
f ′(λi)

,

for i = 1, 2, . . . , n. The positivity of ci is due to the interlac-

ing relation (6).
n∑

i=1

ci = 1 because both of f (x) and g(x) are

monic.

Sufficient condition: Suppose that g(x) has a representation
as in (7). Because all c′i s are positive, the signs of g(λi) R©s
are alternating and hence the roots of g(x) interlace roots of
f (x). �

Proof of Theorem 2. Let PJ(λ), PJ(1,1) (λ) and PJ(2,2) (λ) be the
characteristic polynomial of J, J(1,1) and J(2,2) respectively.
Then

PJ(λ) = |λI − J| =
n∏

i=1

(λ − λi) (8)

and

PJ(2,2) (λ) = |λI − J(2,2)| =

n−2∏
i=1

(λ − νi).
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Meanwhile

PJ(λ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ − b1 −a1
−a1 λ − b2 −a2

−a2 λ − b3
. . .

0

. . .
. . . . . .

0
. . . λ − bn−1 −an−1

−an−1 λ − bn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(9)

Expanding (9) by the first row, we have

PJ(λ) = (λ − b1)PJ(1,1) (λ) − a2
1PJ(2,2) (λ). (10)

Letting λ = b1, (10) becomes

a2
1 = −

PJ(b1)
PJ(2,2) (b1)

= −

∏n
i=1(b1 − λi)∏n−2
j=1 (b1 − ν j)

.

So a positive a1 can be uniquely determined if
∏n

i=1(b1−λi)∏n−2
j=1 (b1−ν j)

< 0.

According to Lemma 3, we have

PJ(1,1) (λ) = c1
PJ(λ)
λ − λ1

+ c2
PJ(λ)
λ − λ2

+ . . . + cn
PJ(λ)
λ − λn

. (11)

Let λ be any eigenvalue λi for i = 1, 2, . . . , n in (10) and (11).
We have

0 = PJ(λi) = (λi − b1)PJ(1,1)(λi) − a2
1PJ(2,2) (λi) (12)

and

PJ(1,1) (λi) = ci

n∏
j=1, j,i

(λi − λ j) = ciP
′

J(λi). (13)

Combining (12) to (13), we have

0 = (λi − b1)ciP
′

J(λi) − a2
1

n−2∏
k=1

(λi − νk),

and hence

ci =
a2

1
∏n−2

k=1(λi − νk)

(λi − b1)P′J(λi)

for i = 1, 2, . . . , n.
According to (11),

PJ(1,1) (λ) =

n∑
i=1

a2
1
∏n−2

k=1(λi − νk)

(λi − b1)P′J(λi)
PJ(λ)
λ − λi

.

Now we have solved the characteristic polynomial of J(1,1),
so Hochstadt’s method (1974) can be applied to finish the
construction of J from σ(J) and σ(J(1,1)). �

Theorem 3. Let J be an irreducible n × n Jacobi matrix as
in (1). Let

• {λi}
n
i=1, {µi}

n−1
i=1 and {νi}

n−2
i=1 be eigenvalues of J, J(1,1) and

J(2,2) respectively;

• {wi}ni=1 be the set of orthonormal eigenvectors associ-
ated with {λi}

n
i=1.

Then the following sets of parameters are equivalent:

(1) {bi}
n
i=1 ∪ {ai}

n−1
i=1 , where (ai > 0) for i = 1, . . . , n.

(2) {λi}
n
i=1 ∪ {µi}

n−1
i=1 satisfying λ1 > µ1 > . . . > µn−1 > λn.

(3) {λi}
n
i=1 ∪ {w

i
1}

n
i=1 with wi

1 > 0 for i = 1, . . . , n.

(4) {λi}
n
i=1 ∪ {ai}

bn/2−1c
i=1 ∪ {bi}

bn/2c
i=1 , where bxc denotes the

greatest integer less than or equal to x and ai > 0 for
i = 1, . . . , bn/2 − 1c.

(5) {λi}
n
i=1 ∪ {νi}

n−2
i=1 ∪ b1 with

∏n
i=1(b1−λi)∏n−2
j=1 (b1−ν j)

< 0.

Proof. It is clear that (2),(3),(4) and (5) are determined by
(1).

“(2)⇒ (1)" is due to Hochstadt (1974) and Gray and Wil-
son (1976).

“(3)⇒ (1)" is due to Gesztesy and Simon (1997).
“(4)⇒ (1)" is due to Hochstadt (1979).
“(5)⇒ (1)" is due to Theorem 2.
In addition, there exist direct connections among these

sets.
“(2)⇒ (3)" Let J = U∗ΛU,where Λ is the diagonal matrix

and U is a unitary matrix consisting of orthonormal eigenvec-
tors, namely U = (w1,w2, . . . ,wn). For any λ which is not an
eigenvalue of J, we have

(λI − J)−1 = U∗(λI − Λ)−1U.

On one hand,

((λI − J)−1δ1, δ1)
= ((λI − Λ)−1Uδ1,Uδ1)

= ((
w1

1

λ − λ1
,

w2
1

λ − λ2
, . . . ,

un
1

λ − λn
), (w1

1, . . . ,w
n
1))

=

n∑
i=1

|wi
1|

2

λ − λi
, (14)

where δ1 = (1, 0, . . . , 0)T . On the other hand,

((λI − J)−1δ1, δ1) =
det(λI − J(1,1))

det(λI − J)

=

∏n−1
i=1 (λ − µi)∏n
i=1(λ − λi)

=

n∑
i=1

PJ(1,1) (λi)
P′J(λi)

1
λ − λi

. (15)

Compare (14) and (15), |wi
1|

2 =
PJ(1,1) (λi)

P′J (λi)
for i = 1, 2, . . . , n.

“(2)⇒ (5)" See the proof of Theorem 2. �
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