A Note On k-Tridiagonal k-Toeplitz Matrices

Emrullah Kırklar
Department of Mathematics
Polatlı Art and Science Faculty of Gazi University, Ankara, Turkey

Fatih Yılmaz
Department of Mathematics
Polatll Art and Science Faculty of Gazi University, Ankara, Turkey

In this note, we give formulas for determinants, permanents, and eigenvalues of k-tridiagonal k-Toeplitz matrices.

Introduction

The determinant of an $n \times n$ matrix $A=\left(a_{i j}\right)$ is defined by

$$
\operatorname{det}(A)=\sum_{\sigma \in S_{n}} \operatorname{sgn}(\sigma) \prod_{i=1}^{n} a_{i \sigma(i)},
$$

where S_{n} represents the symmetric group of degree n. Analogously, the permanent of A is

$$
\operatorname{per}(A)=\sum_{\sigma \in S_{n}} \prod_{i=1}^{n} a_{i \sigma(i)} .
$$

In literature, there are many methods for computing determinants. But less is known for permanent computation.

In matrix theory, a permutation matrix is a square binary matrix that has exactly one entry 1 in each row and each column and 0s elsewhere (Zhang, 1999). Let P be a permutation matrix. Then, P^{T} is also a permutation matrix. Furthermore, $P^{T}=P^{-1}$.

A matrix $A=\left[a_{i, j}\right] \in M_{n+1}$ of the form

$$
A=\left(\begin{array}{cccccc}
a_{0} & a_{1} & a_{2} & \cdots & \cdots & a_{n} \\
a_{-1} & a_{0} & a_{1} & \ddots & & \vdots \\
a_{-2} & a_{-1} & \ddots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & a_{1} & a_{2} \\
\vdots & & \ddots & a_{-1} & a_{0} & a_{1} \\
a_{-n} & \cdots & \cdots & a_{-2} & a_{-1} & a_{0}
\end{array}\right)
$$

is called a Toeplitz matrix (Horn \& Johnson, 1985). The general term is $a_{i, j}=a_{j-i}$ for some given sequences $a_{-n}, a_{-n+1}, \ldots, a_{-1}, a_{0}, a_{1}, a_{2}, \ldots, a_{n-1}, a_{n} \in \mathbb{C}$. The entries of A are constant down the diagonals parallel to the main diagonal.

Eigenvalues of a matrix are a fundemental tool in mathematics and have many applications, such as linear equation

[^0]systems, determinants, ordinary differential equations, partial differential equations and so on. Let A be an n-square matrix. The characteristic polynomial of A is
$$
\operatorname{det}\left(\lambda I_{n}-A\right)=\lambda^{n}+a_{n-1} \lambda^{n-1}+\cdots+a_{1} \lambda+a_{0}
$$
and roots of the polynomial are called eigenvalues of A.
Recently, there has been a number of papers on k tridiagonal matrices and their applications. For example, Asci, Tasci, and El-Mikkawy (2012) gave algorithms for determinants and permanents of k-tridiagonal matrices using $L U$ factorization. Kilic and Tasci (2007) obtained some identities for relationship between some famous number sequences and permanents of some tridiagonal matrices. Yalciner (2011) gave $L U$ factorizations for k-tridiagonal matrices. Then, Yalçıner obtained determinants of k-tridiagonal matrices by using $L U$ factorization. Moreover, Yalciner found eigenvalues of k-tridiagonal matrices by Chebyshev polinomials.

Brualdi and Gibson (1977) showed that

$$
\begin{equation*}
\operatorname{per}\left(P^{T} A P\right)=\operatorname{per}\left(P^{-1} A P\right)=\operatorname{per}(A) \tag{1}
\end{equation*}
$$

where P is a permutation matrix. Brualdi and Ryser (1991) showed that for a block matrix

$$
\begin{align*}
A & =\left(\begin{array}{cc}
A_{1} & 0 \\
A_{3} & A_{2}
\end{array}\right), \\
\operatorname{per}(A) & =\operatorname{per}\left(A_{1}\right) \operatorname{per}\left(A_{2}\right) . \tag{2}
\end{align*}
$$

Sogabe and El-Mikkawy (2011) obtained a fast block diagonalization of k-tridiagonal matrices using permutation matrices. In other words, they considered an n-square k -
tridiagonal matrix $T_{n}^{(k)}$,

$$
T_{n}^{(k)}=\left(\begin{array}{cccccccc}
a_{1} & 0 & \ldots & 0 & b_{1} & 0 & \ldots & 0 \\
0 & a_{2} & 0 & \vdots & & b_{2} & \ddots & \vdots \\
\vdots & & \ddots & 0 & & & \ddots & 0 \\
0 & & & a_{n-k} & & & & b_{n-k} \\
c_{k+1} & & & & \ddots & & & 0 \\
0 & c_{k+2} & & & & \ddots & & \vdots \\
\vdots & \ddots & \ddots & & & & a_{n-1} & 0 \\
0 & \ldots & 0 & c_{n} & 0 & \ldots & 0 & a_{n}
\end{array}\right)
$$

Sogabe and El-Mikkawy (2011) obtained a permutation matrix P as following:

$$
P=\left[P_{\overline{0}}, P_{\overline{1}}, \ldots, P_{\overline{k-1}}\right]
$$

where

$$
\bar{r}=\{i: i \equiv r(\bmod k), i=1,2, \ldots, n\}, \quad r \in\{0,1,2, \ldots, k-1\}
$$

and $P_{\bar{r}}$ is $n \times|\bar{r}|$ matrix such that each column is the i th unit vector e_{i}, where $i \in \bar{r}$ and $|\bar{r}|$ denotes number of elements of \bar{r}. So, by matrix multiplication

$$
P^{T} T_{n}^{(k)} P=T_{0} \oplus T_{1} \oplus \ldots \oplus T_{k-1}
$$

where \oplus denotes the direct sum of matrices and T_{i} 's are $|\bar{i}|$ square tridiagonal matrices.

In this paper, we consider k-tridiagonal k-Toeplitz matrices of the form

$$
T_{n(k)}^{(k)}=\left(\begin{array}{cccccccccc}
a_{1} & 0 & \cdots & 0 & b_{1} & 0 & & & & 0 \tag{3}\\
0 & a_{2} & & & & b_{2} & & & & \\
\vdots & & \ddots & & & & \ddots & & & \\
0 & & & a_{k} & & & & b_{k} & & \\
c_{1} & & & & a_{1} & & & & b_{1} & 0 \\
0 & c_{2} & & & & a_{2} & & & & \ddots \\
& & \ddots & & & & \ddots & & & \\
& & & c_{k} & & & & a_{k} & & \\
& & & & c_{1} & & & & a_{1} & \\
0 & & & & 0 & \ddots & 0 & \cdots & 0 & \ddots
\end{array}\right)
$$

and we will obtain eigenvalues, determinants, and permanents of the matrix family.

Main results

Diagonalization of k-tridiagonal k-Toeplitz matrices

Using the similar method of used by Sogabe and ElMikkawy (2011), one can transform k-tridiagonal k-Toeplitz matrices to the following form

where T_{i} 's are $|\bar{i}|$-square tridiagonal Toeplitz matrices.

Determinants

Zhang (1999) considered tridiagonal Toeplitz matrices of the following form

$$
T_{n}=\left(\begin{array}{ccccc}
a & b & 0 & \cdots & 0 \tag{4}\\
c & a & b & & \vdots \\
0 & c & \ddots & \ddots & 0 \\
\vdots & & \ddots & \ddots & b \\
0 & \cdots & 0 & c & a
\end{array}\right)_{n \times n}
$$

By Laplace expansion, $\operatorname{det}\left(T_{n}\right)=a \operatorname{det}\left(T_{n-1}\right)-b c \operatorname{det}\left(T_{n-2}\right)$. In other words,

$$
\operatorname{det}\left(T_{n}\right)=v_{n}
$$

where $v_{n}=a v_{n-1}-b c v_{n-2}$ with initial conditions $v_{-1}=$ $0, v_{0}=1, v_{1}=a$. Then, we have the following theorem.
Theorem 1.

$$
\operatorname{det} T_{n(k)}^{(k)}=\prod_{i=0}^{k-1} v_{|\bar{i}|},
$$

where $v_{n}=a_{i} v_{n-1}-b_{i} c_{i} v_{n-2}$ with initial conditions $v_{-1}=$ $0, v_{0}=1, v_{1}=a$.
Proof. It is clear that

$$
\operatorname{det} T_{n(k)}^{(k)}=\operatorname{det}\left(T_{0}\right) \operatorname{det}\left(T_{1}\right) \ldots \operatorname{det}\left(T_{k-1}\right)
$$

Since $\operatorname{det}\left(T_{i}\right)=v_{\mid \bar{i}}$,

$$
\operatorname{det} T_{n(k)}^{(k)}=\operatorname{det}\left(T_{0}\right) \operatorname{det}\left(T_{1}\right) \ldots \operatorname{det}\left(T_{k-1}\right)=\prod_{i=0}^{k-1} v_{|i|}
$$

Eigenvalues

Kulkarni, Schimdt, and Tsui (1999) considered tridiagonal Toeplitz matrices of the form (4), then obtained the eigenvalues as

$$
\lambda_{k}=a-2 \sqrt{b c} \cos \left(\frac{k \pi}{n+1}\right) \quad k=1,2, \ldots, n
$$

Theorem 2. The eigenvalues of $T_{n(k)}^{(k)}$ are

$$
\lambda_{j}=a_{i}-2 \sqrt{b_{i} c_{i}} \cos \left(\frac{j \pi}{|\bar{i}|+1}\right)
$$

where $j=1,2, \ldots,|\bar{i}|, i=0,1, \ldots, k-1$.
Proof. Since

$$
\operatorname{det}\left(\lambda I_{n}-P^{T} T_{n(k)}^{(k)} P\right)=\operatorname{det}\left(\lambda I_{n}-T_{n(k)}^{(k)}\right)=\prod_{i=0}^{k-1} \operatorname{det}\left(\lambda I_{|\bar{i}|}-T_{i}\right)
$$

the eigenvalues of each T_{i} matrices are the eigenvalues of $T_{n(k)}^{(k)}$ matrix. So, we get the eigenvalues of $T_{n(k)}^{(k)}$ matrix as below:

$$
\lambda_{j}=a_{i}-2 \sqrt{b_{i} c_{i}} \cos \left(\frac{j \pi}{|\bar{i}|+1}\right)
$$

here $j=1,2, \ldots,|\bar{i}|, i=0,1, \ldots, k-1$, which is desired.

Permanents

El-Mikkawy (2003) considered determinants of tridiagonal matrices of the form

$$
A=\left(\begin{array}{ccccc}
a_{1} & b_{1} & 0 & \cdots & 0 \\
c_{2} & a_{2} & b_{2} & & \vdots \\
0 & c_{3} & \ddots & \ddots & 0 \\
\vdots & & \ddots & \ddots & b_{i-1} \\
0 & \cdots & 0 & c_{i} & a_{i}
\end{array}\right), \quad i=2,3, \ldots, n
$$

here $f_{1}=a_{1}$. Then, he gave the determinants of the matrix family satisfying a three-term recurrence; i.e. $f_{i}=\operatorname{det} A$:

$$
f_{i}=a_{i} f_{i-1}-b_{i-1} c_{i} f_{i-2}
$$

with initial conditions $f_{0}=1$ and $f_{-1}=0$. Using the converter matrix S, given by Kilic and Tasci (2010), and Hadamard multiplication, the permanent of the matrix (4) is

$$
\operatorname{per}\left(T_{n}\right)=u_{n}
$$

where $u_{n}=a u_{n-1}+b c u_{n-2}$ with initial conditions $u_{0}=1$ and $u_{-1}=0$.

Moreover, this result can be also verified by applying a consecutive "contraction" method on last column, which is
given by Brualdi and Gibson (1977). Then, one can see that r th contraction step is

$$
T_{n}^{\{r\}}=\left(\begin{array}{ccccc}
a & b & 0 & & 0 \\
c & a & b & & \\
& \ddots & \ddots & \ddots & \\
& & c & a & b \\
0 & & & c u_{r} & u_{r+1}
\end{array}\right)_{(n-r) \times(n-r)}
$$

for $1 \leq r \leq n-3$. Going on with this process

$$
T_{n}^{\{n-2\}}=\left(\begin{array}{cc}
a & b \\
c u_{n-2} & u_{n-1}
\end{array}\right)
$$

Since $\operatorname{per}\left(T_{n}\right)=\operatorname{per}\left(T_{n}^{\{r\}}\right)$, we have $\operatorname{per}\left(T_{n}\right)=a u_{n-1}+b c u_{n-2}$. So $\operatorname{per}\left(T_{n}\right)=u_{n}$, which is desired.

Theorem 3. Permanents of k-tridiagonal k-Toeplitz matrices are

$$
\operatorname{per}\left(T_{n(k)}^{(k)}\right)=\prod_{i=0}^{k-1} u_{|\bar{i}|}
$$

where $u_{n}=a_{i} u_{n-1}+b_{i} c_{i} u_{n-1}$ with $u_{0}=1$ and $u_{-1}=0$.
Proof. By (1) and (2),

$$
\begin{aligned}
\operatorname{per}\left(P^{T} T_{n(k)}^{(k)} P\right) & =\operatorname{per}\left(T_{n(k)}^{(k)}\right) \\
& =\operatorname{per}\left(T_{0} \oplus T_{1} \oplus \cdots \oplus T_{k-1}\right)=\prod_{i=0}^{k-1} \operatorname{per}\left(T_{i}\right)
\end{aligned}
$$

and

$$
\operatorname{per}\left(T_{i}\right)=u_{|i|} .
$$

So,

$$
\operatorname{per}\left(T_{n(k)}^{(k)}\right)=\prod_{i=0}^{k-1} u_{|\bar{i}|}
$$

The proof is completed.

Illustrative Example

Let us consider a 3-tridiagonal 3-Toeplitz matrix of order 8:

$$
T_{8(3)}^{(3)}=\left(\begin{array}{rrrrrrrr}
1 & 0 & 0 & -1 & 0 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 & 3 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 & 1 & 0 & 0 \\
-2 & 0 & 0 & 1 & 0 & 0 & -1 & 0 \\
0 & 4 & 0 & 0 & 2 & 0 & 0 & 3 \\
0 & 0 & 2 & 0 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & -2 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 4 & 0 & 0 & 2
\end{array}\right)
$$

The permutation matrix is $P=\left[e_{3}, e_{6}, e_{1}, e_{4}, e_{7}, e_{2}, e_{5}, e_{8}\right]$ and

$$
P^{T}=\left(\begin{array}{llllllll}
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

then

$$
P^{T} T_{8(3)}^{(3)}=\left(\begin{array}{rrrrrrrr}
0 & 0 & -1 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 2 & 0 & 0 & -1 & 0 & 0 \\
1 & 0 & 0 & -1 & 0 & 0 & 0 & 0 \\
-2 & 0 & 0 & 1 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & -2 & 0 & 0 & 1 & 0 \\
0 & 2 & 0 & 0 & 3 & 0 & 0 & 0 \\
0 & 4 & 0 & 0 & 2 & 0 & 0 & 3 \\
0 & 0 & 0 & 0 & 4 & 0 & 0 & 2
\end{array}\right)
$$

So,

$$
\begin{aligned}
P^{T} T_{8(3)}^{(3)} P & =\left(\begin{array}{rrrrrrr}
-1 & 1 & & & & & \\
2 & -1 & & & & & \\
\\
& & 1 & -1 & 0 & & \\
& & -2 & 1 & -1 & & \\
& & 0 & -2 & 1 & & \\
\\
& & & & & 2 & 3
\end{array}\right) \\
0 & \\
& \\
& \\
& \\
& =T_{0} \oplus T_{1} \oplus T_{2} .
\end{aligned}
$$

Consequently,

$$
\begin{aligned}
& \operatorname{det}\left(T_{8(3)}^{(3)}\right)=\operatorname{det}\left(T_{0}\right) \operatorname{det}\left(T_{1}\right) \operatorname{det}\left(T_{2}\right)=(-1)(-3)(-40)=-120, \\
& \operatorname{per}\left(T_{8(3)}^{(3)}\right)=\operatorname{per}\left(T_{0}\right) \cdot \operatorname{per}\left(T_{1}\right) \cdot \operatorname{per}\left(T_{2}\right)=3 \cdot 5 \cdot 56=840 .
\end{aligned}
$$

Since the eigenvalues of T_{i} are also the eigenvalues of the matrix $T_{8(3)}^{(3)}$, the eigenvalues of T_{0} are

$$
\begin{aligned}
& \lambda_{1}=-1-2 \sqrt{2} \cos \left(\frac{\pi}{3}\right)=-1-\sqrt{2} \\
& \lambda_{2}=-1-2 \sqrt{2} \cos \left(\frac{2 \pi}{3}\right)=-1+\sqrt{2}
\end{aligned}
$$

The eigenvalues of T_{1} are

$$
\begin{aligned}
& \lambda_{3}=1-2 \sqrt{2} \cos \left(\frac{\pi}{4}\right)=-1 \\
& \lambda_{4}=1-2 \sqrt{2} \cos \left(\frac{\pi}{2}\right)=1 \\
& \lambda_{5}=1-2 \sqrt{2} \cos \left(\frac{3 \pi}{4}\right)=3
\end{aligned}
$$

The eigenvalues of T_{2} are

$$
\begin{aligned}
& \lambda_{6}=2-4 \sqrt{3}\left(\cos \frac{\pi}{4}\right)=2-2 \sqrt{6} \\
& \lambda_{7}=2-4 \sqrt{3}\left(\cos \frac{\pi}{2}\right)=2 \\
& \lambda_{8}=2-4 \sqrt{3}\left(\cos \frac{3 \pi}{4}\right)=2+2 \sqrt{6}
\end{aligned}
$$

Consequently, the eigenvalues of $T_{8(3)}^{(3)}$ are $\lambda_{1}=-1-\sqrt{2}$, $\lambda_{2}=-1+\sqrt{2}, \lambda_{3}=-1, \lambda_{4}=1, \lambda_{5}=3, \lambda_{6}=2-2 \sqrt{6}$, $\lambda_{7}=2, \lambda_{8}=2+2 \sqrt{6}$.

References

Asci, M., Tasci, D., \& El-Mikkawy, M. (2012). On determinants and permanents of k-tridiagonal Toeplitz matrices. Utilitas Mathematica, 89, 97-106.
Brualdi, R. A., \& Gibson, P. M. (1977). Convex polyhedra of doubly stochastic matrices I: applications of the permanent function. J. Combin. Theory A, 2, 194 230. Retrieved from http://www.sciencedirect.com// science/article/pii/0097316577900516 doi: 10 .1016/0097-3165(77)90051-6
Brualdi, R. A., \& Ryser, H. J. (1991). Combinatorial matrix theory. Cambridge University Press.
El-Mikkawy, M. (2003). A note on a three-term recurrence for a tridiagonal matrix. Applied Mathematics and Computation, 139, 503-511.
Horn, R. A., \& Johnson, C. R. (1985). Matrix analysis. Cambridge University Press.
Kilic, E., \& Tasci, D. (2007). On the permanents of some tridiagonal matrices with applications to the Fibonacci and Lucas numbers. Rocky Mountain Journal of Mathematics, 37.
Kilic, E., \& Tasci, D. (2010). Negatively subscripted Fibonacci and Lucas numbers and their complex factorizations. Ars Combinatoria, 96.
Kulkarni, D., Schimdt, D., \& Tsui, S. K. (1999). Eigenvalues of tridiagonal pseudo-Toeplitz matrices. Linear Alg. And Its Appl., 297, 63-80. Retrieved from http://www.sciencedirect.com/ science/article/pii/S0024379599001147\# doi: 10.1016/S0024-3795(99)00114-7

Sogabe, T., \& El-Mikkawy, M. (2011). Fast block diagonalization of k-tridiagonal matrices. Applied Mathematics and Computation, 218(6), 2740-2743. Retrieved from http://www.sciencedirect.com/ science/article/pii/S009630031101040X doi: 10.1016/j.amc.2011.08.014

Yalciner, A. (2011). The $L U$ factorizations and determinants of $k-$ tridiagonal matrices. Asian-European Journal of Mathematics, 4, 187-197.
Zhang, F. (1999). Matrix theory basic results and techniques. Springer.

[^0]: Corresponding Author Email: fatihyilmaz@gazi.edu.tr

