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In this note, we give formulas for determinants, permanents, and eigenvalues of k-tridiagonal
k-Toeplitz matrices.

Introduction

The determinant of an n× n matrix A = (ai j) is defined by

det(A) =
∑
σ∈S n

sgn(σ)
n∏

i=1

aiσ(i) ,

where S n represents the symmetric group of degree n. Anal-
ogously, the permanent of A is

per(A) =
∑
σ∈S n

n∏
i=1

aiσ(i) .

In literature, there are many methods for computing deter-
minants. But less is known for permanent computation.

In matrix theory, a permutation matrix is a square binary
matrix that has exactly one entry 1 in each row and each col-
umn and 0s elsewhere (Zhang, 1999). Let P be a permutation
matrix. Then, PT is also a permutation matrix. Furthermore,
PT = P−1.

A matrix A = [ai, j] ∈ Mn+1 of the form

A =



a0 a1 a2 · · · · · · an

a−1 a0 a1
. . .

...

a−2 a−1
. . .

. . .
. . .

...
...

. . .
. . .

. . . a1 a2
...

. . . a−1 a0 a1
a−n · · · · · · a−2 a−1 a0


is called a Toeplitz matrix (Horn & Johnson, 1985). The
general term is ai, j = a j−i for some given sequences
a−n, a−n+1, ..., a−1, a0, a1, a2, ..., an−1, an ∈ C. The entries of
A are constant down the diagonals parallel to the main diag-
onal.

Eigenvalues of a matrix are a fundemental tool in mathe-
matics and have many applications, such as linear equation
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systems, determinants, ordinary differential equations, par-
tial differential equations and so on. Let A be an n−square
matrix. The characteristic polynomial of A is

det(λIn − A) = λn + an−1λ
n−1 + · · · + a1λ + a0

and roots of the polynomial are called eigenvalues of A.

Recently, there has been a number of papers on k-
tridiagonal matrices and their applications. For example,
Asci, Tasci, and El-Mikkawy (2012) gave algorithms for
determinants and permanents of k-tridiagonal matrices us-
ing LU factorization. Kilic and Tasci (2007) obtained some
identities for relationship between some famous number se-
quences and permanents of some tridiagonal matrices. Yal-
ciner (2011) gave LU factorizations for k-tridiagonal matri-
ces. Then, Yalçıner obtained determinants of k-tridiagonal
matrices by using LU factorization. Moreover, Yalciner
found eigenvalues of k-tridiagonal matrices by Chebyshev
polinomials.

Brualdi and Gibson (1977) showed that

per(PT AP) = per(P−1AP) = per(A), (1)

where P is a permutation matrix. Brualdi and Ryser (1991)
showed that for a block matrix

A =

(
A1 0
A3 A2

)
,

per(A) = per(A1)per(A2). (2)

Sogabe and El-Mikkawy (2011) obtained a fast block
diagonalization of k-tridiagonal matrices using permutation
matrices. In other words, they considered an n-square k-
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tridiagonal matrix T (k)
n ,

T (k)
n =



a1 0 . . . 0 b1 0 . . . 0

0 a2 0
... b2

. . .
...

...
. . . 0

. . . 0
0 an−k bn−k

ck+1
. . . 0

0 ck+2
. . .

...
...

. . .
. . . an−1 0

0 . . . 0 cn 0 . . . 0 an


Sogabe and El-Mikkawy (2011) obtained a permutation ma-
trix P as following:

P =
[
P0, P1, . . . , Pk−1

]
where

r = {i : i ≡ r (mod k), i = 1, 2, ..., n}, r ∈ {0, 1, 2, ..., k − 1}

and Pr is n × |r| matrix such that each column is the ith unit
vector ei, where i ∈ r and |r| denotes number of elements of
r. So, by matrix multiplication

PT T (k)
n P = T0 ⊕ T1 ⊕ . . . ⊕ Tk−1

where ⊕ denotes the direct sum of matrices and Ti’s are
∣∣∣i∣∣∣-

square tridiagonal matrices.
In this paper, we consider k-tridiagonal k-Toeplitz matri-

ces of the form

T (k)
n(k) =



a1 0 · · · 0 b1 0 0
0 a2 b2
...

. . .
. . .

0 ak bk

c1 a1 b1 0

0 c2 a2
. . .

. . .
. . .

ck ak

c1 a1

0 0
. . . 0 · · · 0

. . .


(3)

and we will obtain eigenvalues, determinants, and perma-
nents of the matrix family.

Main results

Diagonalization of k-tridiagonal k-Toeplitz matrices

Using the similar method of used by Sogabe and El-
Mikkawy (2011), one can transform k-tridiagonal k-Toeplitz
matrices to the following form

PT T (k)
n(k)P

=



ak bk 0 0

ck ak
. . .

0
. . .

. . . bk

ck ak 0
0 a1 b1

c1 a1
. . .

. . .
. . . b1

c1 a1

. . .

ak−1 bk−1

ck−1 ak−1
. . . 0

. . .
. . . bk−1

0 0 ck−1 ak−1


where Ti’s are

∣∣∣i∣∣∣-square tridiagonal Toeplitz matrices.

Determinants

Zhang (1999) considered tridiagonal Toeplitz matrices of
the following form

Tn =



a b 0 · · · 0

c a b
...

0 c
. . .

. . . 0
...

. . .
. . . b

0 · · · 0 c a


n×n

. (4)

By Laplace expansion, det(Tn) = a det(Tn−1) − bc det(Tn−2).
In other words,

det(Tn) = vn

where vn = avn−1 − bcvn−2 with initial conditions v−1 =

0, v0 = 1, v1 = a. Then, we have the following theorem.

Theorem 1.

det T (k)
n(k) =

k−1∏
i=0

v∣∣∣i∣∣∣,
where vn = aivn−1 − bicivn−2 with initial conditions v−1 =

0, v0 = 1, v1 = a.

Proof. It is clear that

det T (k)
n(k) = det(T0) det(T1) . . . det(Tk−1).

Since det(Ti) = v∣∣∣i∣∣∣,
det T (k)

n(k) = det(T0) det(T1) . . . det(Tk−1) =

k−1∏
i=0

v∣∣∣i∣∣∣.
�
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Eigenvalues

Kulkarni, Schimdt, and Tsui (1999) considered tridiago-
nal Toeplitz matrices of the form (4), then obtained the eigen-
values as

λk = a − 2
√

bc cos
(

kπ
n + 1

)
k = 1, 2, . . . , n.

Theorem 2. The eigenvalues of T (k)
n(k) are

λ j = ai − 2
√

bici cos

 jπ∣∣∣i∣∣∣ + 1


where j = 1, 2, . . . ,

∣∣∣i∣∣∣, i = 0, 1, . . . , k − 1.

Proof. Since

det(λIn − PT T (k)
n(k)P) = det(λIn − T (k)

n(k)) =

k−1∏
i=0

det(λI∣∣∣i∣∣∣ − Ti)

the eigenvalues of each Ti matrices are the eigenvalues of
T (k)

n(k) matrix. So, we get the eigenvalues of T (k)
n(k) matrix as

below:

λ j = ai − 2
√

bici cos

 jπ∣∣∣i∣∣∣ + 1


here j = 1, 2, . . . ,

∣∣∣i∣∣∣, i = 0, 1, . . . , k − 1, which is desired. �

Permanents

El-Mikkawy (2003) considered determinants of tridiago-
nal matrices of the form

A =



a1 b1 0 · · · 0

c2 a2 b2
...

0 c3
. . .

. . . 0
...

. . .
. . . bi−1

0 · · · 0 ci ai


, i = 2, 3, ..., n

here f1 = a1. Then, he gave the determinants of the matrix
family satisfying a three-term recurrence; i.e. fi = det A :

fi = ai fi−1 − bi−1ci fi−2

with initial conditions f0 = 1 and f−1 = 0. Using the
converter matrix S , given by Kilic and Tasci (2010), and
Hadamard multiplication, the permanent of the matrix (4) is

per(Tn) = un

where un = aun−1 + bcun−2 with initial conditions u0 = 1 and
u−1 = 0.

Moreover, this result can be also verified by applying a
consecutive “contraction” method on last column, which is

given by Brualdi and Gibson (1977). Then, one can see that
rth contraction step is

T {r}n =



a b 0 0
c a b

. . .
. . .

. . .

c a b
0 cur ur+1


(n−r)×(n−r)

for 1 ≤ r ≤ n − 3. Going on with this process

T {n−2}
n =

(
a b

cun−2 un−1

)
Since per(Tn) = per(T {r}n ), we have per(Tn) = aun−1 + bcun−2.
So per(Tn) = un, which is desired.

Theorem 3. Permanents of k-tridiagonal k-Toeplitz matrices
are

per(T (k)
n(k)) =

k−1∏
i=0

u∣∣∣i∣∣∣
where un = aiun−1 + biciun−1 with u0 = 1 and u−1 = 0.

Proof. By (1) and (2),

per(PT T (k)
n(k)P) = per(T (k)

n(k))

= per(T0 ⊕ T1 ⊕ · · · ⊕ Tk−1) =

k−1∏
i=0

per(Ti)

and
per(Ti) = u∣∣∣i∣∣∣.

So,

per(T (k)
n(k)) =

k−1∏
i=0

u∣∣∣i∣∣∣.
The proof is completed. �

Illustrative Example

Let us consider a 3-tridiagonal 3-Toeplitz matrix of order
8:

T (3)
8(3) =



1 0 0 −1 0 0 0 0
0 2 0 0 3 0 0 0
0 0 −1 0 0 1 0 0
−2 0 0 1 0 0 −1 0

0 4 0 0 2 0 0 3
0 0 2 0 0 −1 0 0
0 0 0 −2 0 0 1 0
0 0 0 0 4 0 0 2
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The permutation matrix is P = [e3, e6, e1, e4, e7, e2, e5, e8]
and

PT =



0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1


then

PT T (3)
8(3) =



0 0 −1 0 0 1 0 0
0 0 2 0 0 −1 0 0
1 0 0 −1 0 0 0 0
−2 0 0 1 0 0 −1 0

0 0 0 −2 0 0 1 0
0 2 0 0 3 0 0 0
0 4 0 0 2 0 0 3
0 0 0 0 4 0 0 2


.

So,

PT T (3)
8(3)P =



−1 1 0
2 −1

1 −1 0
−2 1 −1

0 −2 1
2 3 0
4 2 3

0 0 4 2


= T0 ⊕ T1 ⊕ T2.

Consequently,

det(T (3)
8(3)) = det(T0) det(T1) det(T2) = (−1)(−3)(−40) = −120,

per(T (3)
8(3)) = per(T0).per(T1).per(T2) = 3.5.56 = 840.

Since the eigenvalues of Ti are also the eigenvalues of the
matrix T (3)

8(3), the eigenvalues of T0 are

λ1 = −1 − 2
√

2 cos
(
π

3

)
= −1 −

√
2

λ2 = −1 − 2
√

2 cos
(

2π
3

)
= −1 +

√
2.

The eigenvalues of T1 are

λ3 = 1 − 2
√

2 cos
(
π

4

)
= −1

λ4 = 1 − 2
√

2 cos
(
π

2

)
= 1

λ5 = 1 − 2
√

2 cos
(

3π
4

)
= 3.

The eigenvalues of T2 are

λ6 = 2 − 4
√

3(cos
π

4
) = 2 − 2

√
6

λ7 = 2 − 4
√

3(cos
π

2
) = 2

λ8 = 2 − 4
√

3(cos
3π
4

) = 2 + 2
√

6.

Consequently, the eigenvalues of T (3)
8(3) are λ1 = −1 −

√
2,

λ2 = −1 +
√

2, λ3 = −1, λ4 = 1, λ5 = 3, λ6 = 2 − 2
√

6,
λ7 = 2, λ8 = 2 + 2

√
6.
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