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In this paper, we investigate multi-quadratic fields, looking for those that contain units of norm
−1. We provide results concerning the existence of units of norm −1 in fields of the form
Q(

√
2p) for prime p ≡ 1 mod 4 and prove that all of the fields Q(

√
2,
√

p) with p ≡ 5
mod 8 prime contain a unit of norm −1.

Introduction and Motivation

An example of a question in number theory that is fairly
easy to state (but has no easy solution) is Artin’s conjecture
on primitive roots. An integer a is a primitive root mod
p if 〈a〉 = (Z/pZ)×, that is, if a is a generator for the
multiplicative group of integers mod p. Artin’s conjecture
on primitive roots states that given an integer a , ±1 or a
square, there exist infinitely many primes p (or, a positive
density of primes in the set of all primes) such that a is
a primitive root mod p Artin (1965). The conjecture was
posed by Emil Artin in 1927; it is still unresolved today.
However, there has been significant progress on a proof; it is
known to be true given the truth of a set of the generalized
Riemann hypotheses (GRH) Hooley (1967), and it has been
proven that Artin’s conjecture holds for infinitely many a
Gupta and Murty (1984).

The conjecture has been generalized in a variety of ways
and interesting results have been proven, many assuming
the truth of a set of generalized Riemann hypotheses. One
way to generalize it is to consider a number field besides the
rational numbers. For a number field K, we may substitute
the integers with the ring of integers of the field, OK ,
replace 〈a〉 with any multiplicative subgroup of K×, and
ask an analogous question. For example, given the field
K = Q[

√
2], its ring of integers, OK = Z[

√
2], and the group

of units O×K = {±(1 +
√

2)n : n ∈ Z}, one may ask for which
primes p is the image of O×K in (OK/pOK)× maximized. This
generalization of Artin’s conjecture has been proven to hold
true for a real quadratic or multi-quadratic field (assuming
a set of the generalized Riemann hypotheses) if and only
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if the field contains a unit of norm −1Roskam (2000);
Stadnik (2017). This leads us to explore when quadratic and
multi-quadratic fields have units of norm −1, which is the
focus of this article.

Finding a unit of norm −1 in the quadratic field Q(
√

d)
is equivalent to finding integer solutions (x, y) to the
negative Pell equation x2 − dy2 = −1 (or more generally
x2 − dy2 = −4). We prove in Theorem 3.1 that a set of fields
of the form Q(

√
2p) have a unit of norm −1, and in Theorem

4.2 we show that all fields Q(
√

2,
√

p) with p ≡ 5 mod 8
prime contain a unit of norm −1.

Background

Our main objects of study are number fields, which
are finite field extensions of the rational numbers Q. The
simplest type of number field is a quadratic field, which
is a field of the form Q(

√
d) for a square free integer d.

More generally, a multi-quadratic field is a field of the form
Q(
√

d1,
√

d2, . . . ,
√

dn) where di is square free for each
1 ≤ i ≤ n and n ∈ Z.

Definition 1. Let K ⊆ F be a finite field extension, and let
α ∈ F. We can view F as a vector space over K. The norm of
α, NF/K(α), is the determinant of the linear transformation of
F given by multiplication by α Fröhlich and Taylor (1991).

Given any number field, there is a ring associated to it
that is the analog of the integers Z. The ring of integers, OK ,
of a number field K is the set of all α ∈ K that satisfies a
polynomial of the form xn + an−1xn−1 + . . . + a1x + a0 where
ai ∈ Z for 0 ≤ i ≤ n − 1. By abuse of notation, we call units
in the ring of integers OK of a number field K the units of K.
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Proposition 1. If E is a field containing a unit of norm −1,
then every subfield F ⊆ E also contains a unit of norm −1.

Proof. Let E be a field with a unit α satisfying NE/Q(α) =

−1. Then NE/Q(α) = NF/Q ◦ NE/F(α) = −1 since the norm
map is multiplicative Ireland and Rosen (1990). Thus for β =

NE/F(α), it is clear that NF/Q(β) = NF/Q(NE/F(α)) = −1. �

Thus, it makes sense to begin our search for units of
norm −1 in multi-quadratic fields by examining units in
their subfields, which are also multi-quadratic fields. The
most basic nontrivial subfields of multi-quadratic fields are
quadratic fields. Even for these fields, a complete list of
which have a unit of norm −1 has not been determined. It is
known Fröhlich and Taylor (1991) that when p ≡ 1 mod 4
is prime, the field Q(

√
p) has a unit of norm −1, and if

p, q ≡ 1 mod 4 are prime numbers satisfying the Legendre
symbol

(
p
q

)
= −1 (that is, p ≡ x2 mod q has no solution

in the integers), then Q(
√

pq) contains a unit of norm −1
(Ireland and Rosen (1990), Ch. 17). By contrast, if there is
a prime divisor p|d such that p ≡ 3 mod 4, then Q(

√
d) has

no unit of norm −1 Fröhlich and Taylor (1991).

If K = Q(
√

d) and d ≡ 2, 3 mod 4, then OK = Z[
√

d]
and the norm of α = a + b

√
d for integers a and b is

NK/Q(α) = a2 − b2d Fröhlich and Taylor (1991). Hence
finding units of norm −1 in K is equivalent to finding
solutions to the equation x2 − dy2 = −1 in the integers. An
equation of the form x2 − dy2 = 1 for d > 0 and square
free with solutions (x, y) in the integers is known as a
Pell’s equation, and the similar equation x2 − dy2 = −1 is
known as a negative Pell’s equation. It is known Ireland
and Rosen (1990) that there are infinitely many solutions to
each Pell’s equation; the smallest positive solution is known
as the fundamental solution. It is still an open question to
determine for precisely which d the negative Pell’s equation
x2 − dy2 = −1 has infinitely many solutions, but we see
the connection between finding a unit of norm −1 in these
quadratic fields and finding solutions to a negative Pell’s
equation.

If K = Q(
√

d) and d ≡ 1 mod 4, then OK = Z
1 +

√
d

2


and the norm of α = a + b

(
1+
√

d
2

)
∈ OK is

NK/Q(α) = a2 + ab + b2
(

1−d
4

)
. Completing the square and

multiplying by 4, we determine that a unit α = a + b
(

1+
√

d
2

)
of norm −1 in K is an integer solution to −4 = (2a+b)2−b2d.

Results for Quadratic Fields

Starting with a field of the form Q(
√

2p), p ≡ 1 mod 4,
we find that not every such field contains the unit of norm

−1. The smallest counterexample is Q(
√

34). In Mollin and
Srinivasan (2010), it is proven that the negative Pell’s equa-
tion x2 − ny2 = −1 has a solution in the case that a ≡ −1
mod 2n, where (a, b) is the fundamental solution to the pos-
itive Pell’s equation x2 − ny2 = 1. A solution (u, v) to the
equation x2 − ny2 = −1 for n = 2p then can be used to form
the unit u + v

√
2p ∈ Q(

√
2p) that has norm −1 by construc-

tion, proving the following theorem.

Theorem 1. Consider, for p prime, the quadratic field
Q(

√
2p). Let (a, b) be the fundamental solution to the posi-

tive Pell’s Equation x2 − 2py2 = 1. If a ≡ −1 mod 4p, then
the field has a unit of norm −1.

Results for Multi-Quadratic Fields

We continue the search for units of norm −1 in higher de-
gree multiquadratic fields, beginning with biquadratic fields,
i.e. those of the form K = Q(

√
d1,
√

d2). This type of
field has three quadratic subfields, namely Q1 = Q(

√
d1),

Q2 = Q(
√

d2), and Q3 = Q(
√

d1d2). Fields of this type have
been extensively studied in the literature, and various results
have been proven that we find useful. Kuroda’s class number
formula for multiquadratic fields relates units of K with units
and class numbers of subfields (see Kuroda (1950) or Wada
(1966)).

Theorem 2. (Kuroda’s class number formula for bi-
quadratic fields) Let K denote a totally real biquadratic field
with quadratic subfields Q1, Q2, and Q3. Let hi denote the
class number of Qi, let h denote the class number of K, and
let O×Qi

be the group of units of Qi. Then

h = 1/4 ·

O×K :
3∏

i=1

O×Qi

 h1h2h3.

In Kubota (1956), Kubota completely classified the
structure of the unit group of a biquadratic field K into
one of seven types. His work proves that if each quadratic
subfield of K has a unit xi ∈ Qi of norm NQi

Q xi = −1, then a
system of fundamental units of K must be of one of the two
forms {ε1, ε2, ε3} or

{
ε1, ε2,

√
ε1ε2ε3

}
.

By Proposition 2.2, it is necessary that each of Q1, Q2,
and Q3 has a unit of norm −1. In general this is not a
sufficient condition; for example, Q(

√
10,
√

17) has no
unit of norm −1 even though its three quadratic subfields
Q(
√

10), Q(
√

17), and Q(
√

170) all do. It is known that if p,
q ≡ 1 mod 4 are primes with Legendre symbol

(
p
q

)
= −1,

then the multi-quadratic field Q(
√

p,
√

q) contains a unit
of norm −1 Kubota (1956). A proof of this fact in English
is provided in the Appendix. Attempting to generalize this
result, we consider fields of the form K = Q(

√
2,
√

p) for
p ≡ 1 mod 4 prime, ( 2

p ) = −1. Since , ( 2
p ) = −1 if and

only if p ≡ 3, 5 mod 8 and Q(
√

p) has no unit of norm −1
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when p ≡ 3 mod 8, we turn our attention to primes p ≡ 5
mod 8. It turns out that all of these fields contain a unit of
norm −1.

Theorem 3. Suppose p ≡ 5 mod 8 is prime. Then K =

Q(
√

2,
√

p) contains a unit of norm −1.

Proof. Let K be as given and let Q1 = Q(
√

2), Q2 = Q(
√

p),
and Q3 = Q(

√
2p) be the three quadratic subfields of K. We

have seen that each Qi has fundamental unit εi of norm −1.
So, from Kubota’s work, we know the unit group of K has
one of the two systems of fundamental units {ε1, ε2, ε3} or{
ε1, ε2,

√
ε1ε2ε3

}
. K has the former structure if and only if[

O×K :
∏3

i=1 O
×
Qi

]
= 1 and K has no unit of norm −1; K has

the latter structure if and only if
[
O×K :

∏3
i=1 O

×
Qi

]
= 2 and

z =
√
ε1ε2ε3 is a unit in K of norm −1. We will show that a

system of fundamental units for K is the latter structure, so
K contains a unit z of norm −1.

Let hi denote the class number of Qi and let h denote the
class number of K. Clearly h1 = 1, as Z[

√
2] is a principal

ideal domain. Since p ≡ 1 mod 4, genus theory tells us
that h2 is odd, and in Kučera (1995) it is proven that h3 ≡ 2
mod 4. By Kuroda’s class number formula for biquadratic
fields, h = 1/4 ·

[
O×K :

∏3
i=1 O

×
Qi

]
h1h2h3 ∈ N, so it must

be that 2|
[
O×K :

∏3
i=1 O

×
Qi

]
. Thus the unit group of K must

have system of fundamental units given by
{
ε1, ε2,

√
ε1ε2ε3

}
,

implying that K contains a unit of norm −1.

�

The next two corollaries follow directly from Theorem 4.2
and Stadnik (2017).

Corollary 1. The generalization of Artin’s conjecture on
primitive roots holds for fields of the form K as defined above
(assuming the truth of the GRH).

Corollary 2. There is a positive density of primes p for
which the generalization of Artin’s conjecture on primitive
roots holds for fields of the form K = Q(

√
2,
√

p) (assuming
the truth of the GRH).

It should be noted that there are fields of the form K =

Q(
√

2,
√

p) for p ≡ 1 mod 8 that contain a unit of norm −1;
one such example is Q(

√
2,
√

113). If p ≡ 3 or 7 mod 8,
then the field Q(

√
2,
√

p) will not contain a unit of norm −1
since the subfield Q(

√
p) will not contain a unit of norm −1.

We search for examples of higher degree multi-quadratic
fields that contain units of norm −1 utilizing the com-
puter algebra system PARI/gp. We consider fields of the
form Q(

√
5,
√

p,
√

q), specifically looking at fields satisfy-
ing

(
5
p

)
,
(

5
q

)
,
(

p
q

)
= −1, as these are good candidates for

fields with units of norm −1 by Proposition 2.2. We find
many examples, the smallest being Q(

√
5,
√

13,
√

37). We
also investigate extension fields of Q of degree 16. One ex-
ample we find is Q(

√
5,
√

17,
√

97,
√

853).

Further Research

Based on computations using PARI/gp, we conjecture that
fields of the form K = Q(

√
2,
√

p,
√

q) contain a unit of norm
−1 if both Q(

√
2p,
√

q) and Q(
√

2q,
√

p) contain a unit of
norm −1 (for p, q ≡ 1 mod 4 prime and

(
p
q

)
= −1). This

conjecture holds for all of the fields we tested, though some
of those positive results depend on the truth of GRH. We
also want to look for trends to determine when fields of the
form Q(

√
2p,
√

q) contain a unit of norm −1 when p, q ≡ 1
mod 4 and

(
p
q

)
= −1 (not all of them do).

Appendix

Theorem 4. Suppose p, q ≡ 1 mod 4 are prime numbers
satisfying

(
p
q

)
= −1. Then K = Q(

√
p,
√

q) contains a unit
of norm −1.

Proof. Let K be as given and let Q1 = Q(
√

p), Q2 = Q(
√

q),
and Q3 = Q(

√
pq) be the three quadratic subfields of

K. From (Fröhlich and Taylor (1991), Ireland and Rosen
(1990), Ch. 17), it is known that each Qi has fundamental
unit εi of norm −1. From Kubota’s work, we know the
unit group of K has one of the two systems of fundamental
units {ε1, ε2, ε3} or

{
ε1, ε2,

√
ε1ε2ε3

}
. K has the former

structure if and only if
[
O×K :

∏3
i=1 O

×
Qi

]
= 1 and K has no

unit of norm −1; K has the latter structure if and only if[
O×K :

∏3
i=1 O

×
Qi

]
= 2 and z =

√
ε1ε2ε3 is a unit in K of

norm −1. We will show that a system of fundamental units
for K is the latter structure, so K contains a unit z of norm −1.

Let hi denote the class number of Qi and let h denote the
class number of K. Since p, q ≡ 1 mod 4, genus theory tells
us that h1 and h2 are odd, and in Kučera (1995) it is proven
that h3 ≡ 2 mod 4. By Kuroda’s class number formula for
biquadratic fields, h = 1/4 ·

[
O×K :

∏3
i=1 O

×
Qi

]
h1h2h3 ∈ N,

so it must be that 2|
[
O×K :

∏3
i=1 O

×
Qi

]
. Thus the unit group

of K must have system of fundamental units given by{
ε1, ε2,

√
ε1ε2ε3

}
, implying that K contains a unit of norm −1.

�
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