On Subsums of Series with Positive Terms

Peter Johnson Department of Mathematics and Statistics Auburn University

Connor Malin Mathematics The University of Alabama

A necessary and sufficient condition for subsums of a series $\sum_{k=1}^{\infty} a_k$, such that $0 < a_k \to 0$ as $k \to \infty$, cover the interval [0, s], $s = \sum_{k=1}^{\infty} a_k$, is proved.

Introduction

Throughout, \mathbb{N} will denote the set of non-negative integers. For a series $\sum\limits_{k=0}^{\infty}a_k$ in which $a_k\geq 0$ for all $k\in\mathbb{N}$, a subsum of the series is a sum of the form $\sum\limits_{k\in S}a_k$ for some $S\subseteq N$.

We use the convention that $\sum_{k \in \mathcal{S}} a_k = 0$. If $0 < |S| < \infty$, then $\sum_{k \in S} a_k$ is an ordinary finite subsum. If S is infinite, then $\sum_{k \in S} a_k$ is an infinite series in its own right.

We allow ∞ as a series sum. We shall not distinguish between $\sum_{k \in S} a_k$ as a formal sum and the value of the sum. The

set of subsum values of a series $\sum_{k=0}^{\infty} a_k$ is

Subsum(
$$(a_k)$$
) := $\left\{ \sum_{k \in S} a_k \mid S \subseteq \mathbb{N} \right\}$.

If
$$s = \sum_{k=0}^{\infty} a_k$$
 then

$$Subsum((a_k)) \subseteq [0, s] \subseteq [0, \infty].$$

Theorem 1. Suppose that a_0, a_1, \ldots are positive real numbers, $a_k \to 0$ as $k \to \infty$, and $s = \sum_{k=0}^{\infty} a_k$.

(1) If
$$a_k \leq \sum_{j=k+1}^{\infty} a_j \, \forall k \in \mathbb{N}$$
, then

Subsum(
$$(a_k)$$
) = $\left\{\sum_{j \in S} a_j \mid S \subseteq \mathbb{N}\right\}$ = $[0, s]$.

(2) If
$$a_0 \ge a_1 \ge \dots$$
, and $a_k > \sum_{j=k+1}^{\infty} a_j$ for some $k \in \mathbb{N}$, then
$$I = \left(\sum_{i \in \mathbb{N} \setminus \{k\}} a_j, \sum_{0 \le i \le k} a_j\right) \text{is nonempty, and Subsum}((a_k)) \cap I = \emptyset$$

Corresponding Author Email: johnspd@auburn.edu Research for this paper was supported by NSF grant no. 1560257 *Proof.* Suppose that $a_i \leq \sum_{j=i+1}^{\infty} a_j \ \forall i \in \mathbb{N}$. Clearly $0, s \in \text{Subsum}((a_k))$. Suppose that $x \in (0, s)$. We will define a sequence $\lambda_0, \lambda_1, \ldots$ such that for each $k \in \mathbb{N}, \lambda_k \in \{0, a_k\}$ and $\sum_{k=0}^{\infty} \lambda_k = x$. From this it will follow that $x = \sum_{k \in S} a_k$ where $S = \{k \in \mathbb{N} \mid \lambda_k \neq 0\}$.

Having determined λ_j for all j < k, set $\lambda_k = a_k$ if $x - \left(\sum_{j < k} \lambda_j + a_k\right) > 0$ and $\lambda_k = 0$, otherwise. It remains to be seen that $x = \sum_{j=0}^{\infty} \lambda_j$.

Clearly the partial sums $\sum_{j=0}^{k} \lambda_j$ are non-decreasing and bounded above by x, so we know our series converges to something less than or equal to x.

If $\lambda_k = 0$ then $x - \left(\sum_{j < k} \lambda_i + a_k\right) \le 0$, so $0 < x - \sum_{j < k} \lambda_j \le a_k$. Since $a_k \to 0$, it follows that if $\lambda_k = 0$ for infinitely many values of k, then $\sum_{j=0}^{\infty} \lambda_j = x$.

Otherwise, $\lambda_k = 0$ for only finitely many values of k. Since $\lambda_k \in \{0, a_k\}$ for each $k \in \mathbb{N}$ and $x < s = \sum_{k=0}^{\infty} a_k$, $Z = \{k \in \mathbb{N} \mid \lambda_k = 0\}$ is nonempty.

Let z be the largest element of Z. So $x - \left(\sum_{k < z} \lambda_k + a_z\right) \le 0$, and

$$\begin{split} \sum_{k=0}^{\infty} \lambda_k & \leq x \leq \sum_{k < z} \lambda_k + a_z = \sum_{k \leq z} \lambda_k + a_z \quad (because \ \lambda_z = 0) \\ & \leq \sum_{k \leq z} \lambda_k + \sum_{k=z+1}^{\infty} a_k \\ & = \sum_{k \leq z}^{\infty} \lambda_k \end{split}$$

Therefore $\sum_{k=0}^{\infty} \lambda_k \le x \le \sum_{k=0}^{\infty} \lambda_k$, so $x = \sum_{k=0}^{\infty} \lambda_k$, and because x was chosen arbitrarily from (0, s), (1) is proven.

2 JOHNSON & MALIN

Now suppose that a_0, a_1, \ldots is a non-increasing sequence of positive real numbers which converges to 0. Suppose that for some $k \in \mathbb{N}$, $a_k > \sum_{i>k} a_j$. Therefore

$$\sum_{j\in\mathbb{N}\backslash\{k\}}a_j=\sum_{j< k}a_j+\sum_{j> k}a_j<\sum_{j< k}a_j+\ a_k=\sum_{0\leq j\leq k}a_j\,,$$

so $I = \left(\sum_{j \in \mathbb{N} \setminus \{k\}} a_j, \sum_{0 \le j \le k} a_j\right)$ is a nonempty open interval contained inside $\left[0, \sum_{j=0}^{\infty} a_j\right]$, and we will see that $I \cap \operatorname{Subsum}((a_i)) = \emptyset$.

Suppose that $S \subseteq \mathbb{N}$. If some $r \in \{0, ..., k\}$ is missing from S, then because $a_r \ge a_k$,

$$\sum_{j \in S} a_j \le \sum_{j \in \mathbb{N} \setminus \{r\}} a_j \le \sum_{j \in \mathbb{N} \setminus \{k\}} a_j$$

Otherwise, $\{0, \dots, k\} \subseteq S$, so $\sum_{0 \le j \le k} a_j \le \sum_{j \in S} a_j$. In either case, $\sum_{i \in S} a_i \notin I$, so (2) is proven.

Corollary 1. If $a_0 \ge a_1 \ge \cdots > 0$, $a_k \to 0$ as $k \to \infty$, and $s = \sum_{k=0}^{\infty} a_k$, then the finite subsums of the series $\sum_{k=0}^{\infty} a_i$ are dense in [0, s] if and only if $a_k \le \sum_{i=k+1}^{\infty} a_i$ for all $k \in \mathbb{N}$.

Corollary 2. If a_0, a_1, \ldots are positive real numbers tending to 0 such that $\{a_i\}_{i=0}^{\infty}$ satisfies the hypothesis of (1) of Theorem 1, then so does the non-increasing rearrangement of $\{a_i\}_{i=0}^{\infty}$.

Let ζ denote the Riemann zeta function. We have the following:

Theorem 2. *Suppose that* $p \ge 1$ *. Then*

$$\left\{1 + \sum_{k \in S} \frac{1}{n^p} \mid S \subseteq \{2, 3, \dots\}, |S| < \infty\right\}$$

is dense in $[1, \zeta(p)]$ if and only if $p \le q$, where q (approx. 2.424) is the unique solution of the equation

$$\frac{1}{2^q} = \sum_{n=3}^{\infty} \frac{1}{n^q}$$

Proof. Since $\frac{1}{k} < \sum_{n>k} \frac{1}{n} = \infty$ for all k = 2, 3, ..., the claim of Theorem 2 for p = 1 follows from Corollary 1 applied to the sequence $\frac{1}{2}, \frac{1}{3}, ...$ Suppose p > 1. For $k \ge 2$,

$$\left(\sum_{n>k} \frac{1}{n^p}\right) / \frac{1}{k^p} = \sum_{t=0}^{\infty} \left(\frac{k}{k+t+1}\right)^p$$
$$= \sum_{t=0}^{\infty} \left(1 - \frac{t+1}{k+t+1}\right)^p,$$

which increases as k increases. Therefore, $\frac{1}{k^p} > \sum_{n>k} \frac{1}{n^p}$ for some $k \in \{2,3,\ldots\}$ if and only if $\frac{1}{2^p} > \sum_{n>2} \frac{1}{n^p}$. Applying Corollary 1 to the sequence $\frac{1}{2^p}, \frac{1}{3^p}, \ldots$, we see that $\left\{1+\sum_{n\in S}\frac{1}{n^p} \middle| S\subseteq \{2,3,\ldots\}, |S|<\infty\}\right\}$ is dense in $[1,\zeta(p)]$ if and only if $\frac{1}{2^p} \leq \sum_{n>2} \frac{1}{n^p}$. Note that $\sum_{n>2} \frac{1}{n^p} \middle| \frac{1}{2^p} = \sum_{n=3}^{\infty} \left(\frac{2}{n}\right)^p$ decreases as p increases. Since the ratio is large for p close to 1 and goes to 0 (continuously) as p approaches infinity, the equation $\frac{1}{2^q} = \sum_{n=3}^{\infty} \frac{1}{n^q}$ has a unique solution, q. Then $\frac{1}{2^p} \leq \sum_{n>2} \frac{1}{n^p}$ if and only if $p \leq q$, and the theorem is proved.

Since $\sum\limits_{n=3}^{\infty}\frac{1}{n^2}>\int_3^{\infty}\frac{dx}{x^2}=\frac{1}{3}>\frac{1}{2^2}$ and $\sum\limits_{n=3}^{\infty}\frac{1}{n^3}<\int_2^{\infty}\frac{dx}{x^3}=1/8=\frac{1}{2^3},\ 2< q<3$. Estimating q by a simple program written in Java, we have q is approximately 2.424.

Remarks and Open Questions

The questions that led to the results of this paper arose from Defant (2015), which gives an answer similar to Theorem 2 to a much more difficult question. Here is the question answered:

If we define σ_{-r} on the positive integers by $\sigma_{-r}(n) = \sum_{d|n,d>0} d^{-r}$, in which $r \geq 1$, is the range of σ_{-r} dense in $[1,\zeta(r)]$? This is a question about a very special set of subsums of $\sum_{k=1}^{\infty} k^{-r}$. The answer (Theorem 2.3 in Defant (2015)): the range of σ_{-r} is dense in $[1,\zeta(r)]$ for $1 \leq r \leq \kappa$, where κ is the unique solution in (1,2) of the equation $\frac{2^{\kappa}}{3^{\kappa}+1} = \zeta(\kappa)$ (Defant estimates $\kappa \approx 1.888$.)

We end with two questions: suppose that $a_0 \ge a_1 \ge \cdots > 0$, $a_k \to 0$ as $k \to \infty$, and $s = \sum_{k=0}^{\infty} a_k$.

- 1. Is Subsum((a_k)) necessarily closed? By Theorem 1, the answer is obviously yes if $a_k \leq \sum_{j>k} a_j$ for every $k \in \mathbb{N}$. It follows that it is true if this holds for all but finitely many k.
- 2. Can there be any maximal open intervals in $[0, s] \setminus \text{Subsum}((a_k))$ other than the intervals $\left(\sum_{j \in \mathbb{N} \setminus \{k\}} a_j, \sum_{0 \le j \le k} a_j\right)$ for $k \in \mathbb{N}$ such that $a_k > \sum_{i=k+1}^{\infty} a_j$?

References

Defant, C. (2015). On the density of ranges of generalized divisor functions. *Notes on Number Theory and Discrete Mathematics*, 21, 80 - 87.