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o
A necessary and sufficient condition for subsums of a series ), a;, such that 0 < a; — 0 as

k=1

k — oo, cover the interval [0, 5], s = Y a, is proved.
k=1

Introduction

Throughout, N will denote the set of non-negative inte-

gers. For a series ), a; in which @y > O forall k € N, a
k=0
subsum of the series is a sum of the form ), a; for some

keS
S CN.

We use the convention that >, a; = 0. If 0 < |S| < oo, then
ke
Y, ay is an ordinary finite subsum. If S is infinite, then ) a;
keS keS
is an infinite series in its own right.

We allow oo as a series sum. We shall not distinguish be-
tween ), a; as a formal sum and the value of the sum. The

keS
set of subsum values of a series ), a is
k=0
Subsum((ay)) := {Z al|Sc N}.
keS

If s = ) a; then
k=0

Subsum((ay)) C [0, s] C [0, oo].
Theorem 1. Suppose that ay,ay,... are positive real num-

bers, axy — 0ask — oo, and s = Y, .
k=0

() Ifag < Y, a;VkeN, then
Jj=k+1

Subsum((ay)) = Z aj| S €N =[0,s].

jes
(2)Ifagy > a1 > ...,and ay > ), a;forsomekeN, then
Jj=k+1
1= ( 2 aj, ), aj) is nonempty, and Subsum((ay))NI = 0
JjeNV(k} © 0<j<k
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Proof. Suppose that ¢; < 3, a; Vi € N. Clearly 0,5 €
j=itl

Subsum((ax)). Suppose that x € (0,s). We will define a

sequence Ao, A, ... such that for each k € N, A; € {0, a;} and

>, A = x. From this it will follow that x = 3, a; where

k=0 kes
S ={keN|A4 #0}.

Having determined A; for all j < k, set A = qa; if

X — (Z A+ ak) > 0 and 4; = 0, otherwise. It remains to
Jj<k

0
be seen that x = ) 4;.
Jj=0

k
Clearly the partial sums }, A; are non-decreasing and
Jj=0
bounded above by x, so we know our series converges to
something less than or equal to x.
If Ay :Othenx—(z /1,-+ak) <0,500 <x— } A; < ax.
Jj<k Jj<k
Since a; — 0, it follows that if 4x = O for infinitely many
values of k, then }, 4; = x.
j=0
Otherwise, 4; = 0 for only finitely many values of %.

Since A; € {0,a;} for each k € Nand x < s = ) a,
k=0
Z = {k € N| A = 0} is nonempty.
Let z be the largest element of Z. So x — (Z Ay + az) <0,

k<z
and

Z/lkaS /lk+aZ=Z:/lk+aZ (because A, = 0)
k=0 k< k<z

N

Therefore ), Ay < x < X A, s0 x = ), A, and because x

k=0 k=0 -
was chosen arbitrarily from (0, s), (1) is proven.
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Now suppose that ag, ay, . .. is a non-increasing sequence
of positive real numbers which converges to 0. Suppose that

for some k € N, a; > 3 a;. Therefore
J>k

> = T Sar< Do a= 3 o
JjeN\{k} j<k >k J<k 0<j<k
sol = ( > aj, ), a.,-) is a nonempty open interval con-
JENVk} T 0<j<k

tained inside |0, )’ a;|, and we will see that

j=0

I N Subsum((a;)) = 0
Suppose that S € N. If some r € {0,...
from S, then because a, > ay,

DI
I JEN\{r} JEN\{k}
Otherwise, {0,...,k} C

,k} is missing

S,s0 ) a; £ ) a;. Ineither
0<j<k jes

case, ), a; ¢ I, so (2) is proven. m]
J€S

Corollaryl Ifagy 2 a; 2 -+ >0, a — Oask — 0,

and s = Z ay, then the finite subsums of the series Z a; are
k=0 k=0

dense in [0, s] if and only if ay < Z ajforall k € N.
J=k+1

Corollary 2. If ag,ay, ... are positive real numbers tending
to 0 such that {a;}}2, satisfies the hypothesis of (1) of Theorem
1, then so does the non-increasing rearrangement of {a;};°.

Let ¢ denote the Riemann zeta function. We have the fol-
lowing:

Theorem 2. Suppose that p > 1. Then

{1+ —|SC 3...},|S|<oo}
keS

is dense in [1,{(p)] if and only if p < g, where q (approx.
2.424) is the unique solution of the equation

oo

1
:;E

Proof. Slnce - < Z = oo forall k = 2,3,..., the claim of

Theorem 2 for p= 1 follows from Corollary 1 applied to the
sequence . Suppose p > 1. For k > 2,

1)1 < koY
[;n_P]/k_PZZ(k+t+l)
- t+1
Z( k+t+1)’

t=0

which increases as k increases. Therefore, kl, > 3 ni,
n>k

for some k € {2,3,...} if and only if 2,, > niﬂ Ap-
n>2

1 1

35> 35>+ WE SEE that

plying Corollary 1 to the sequence

{1+2#
nes
and only if - » < <y

S c{2,3,...1LIS|< 00}} isdense in [1, {(p)] if

P
-=. Note that Z L% = Z%(g) de-

n>2 n=
creases as p increases. Since the ratlo is large for p close

to 1 and goes to O (continuously) as p approaches infinity,

P
the equation 5; = 23
n=
# < 22”7 if and only if p < ¢, and the theorem is
n

proved. O

L has a unique solution, q. Then

1

(s8] 00
: __ 1 1 © gy _
Slncen i > f3 g = 5 and § i < fz 9=

1/8 = 2;, 2 < g < 3. Estimating q by a s1mple program
written in Java, we have q is approximately 2.424.

Remarks and Open Questions

The questions that led to the results of this paper arose
from Defant|(2015), which gives an answer similar to Theo-
rem 2 to a much more difficult question. Here is the question
answered:

If we define o_, on the positive integers by o_.(n) =

>, d7, in which r > 1, is the range of o_, dense in
d|n,d>0
[1,Z£(r)]? This is a question about a very special set of sub-

sums of ), k~". The answer (Theorem 2.3 in|Defant|(2015)):

k=1
the range of o_, is dense in [1, {(r)] for 1 < r < «, where «k is

2K 3%+1
()

(Defant estimates «x =~ 1.888.)

We end with two questions: suppose that ay > a; > -+ >

0,a;, > 0ask —> oo,and s = ) a.
k=0

1. Is Subsum((ay)) necessarily closed? By Theorem 1, the

answer is obviously yes if a;x < ), a; for every k € N. It
>k

follows that it is true if this holds for all but finitely many k.

2. Can there be any maximal open intervals in [0, s] \

aj, 2, aj)for

Subsum((ay)) other than the intervals ( >
0<j<k

JEN\{k}

k € Nsuchthatay > 3 a;?
Jj=k+1
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