Alabama Journal of Mathematics
40 (2016)

ISSN 2373-0404

Counting lattice points of quadratic forms over the ring Z 3
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Let O(x) = QO(x1, x2,. .

., X,) be a quadratic form in n-variables with integer coefficients. We

obtain bounds on the lattice points over the ring 223 to the congruence Q(x) = 0 (mod p*) in a
general rectangular box. We use Fourier series and exponential sums to obtain our results.

Introduction

Let O(x) = QO(x1, X2, Xn) = Xigi<j<n dijXiX)j, be a
nonsingular quadratic form with integer coefficients in n-
variables. Let V3 7 = V3 7(Q) be the set of integer solutions
of the equation defined by

0(x)=0 (mod p’), (1)

(in ZZ3) and and let B be a box defined by
B={xeZ"la;<xi<ai+m, 1 <i<ny, )
where a;,m; € Z,and 0 < m; < p3 for 1 <i < n. Let|B|

denote the cardinality of the box $. We call the box a cube
of size m if m; = m for all i. Suppose that n is even and and
Ay is the n X n defining matrix for Q(x). Let

(-1)2 detAQ]

A=Ap(Q)=( >

where (./p) denotes the Legendre-Jacobi symbol. In this pa-
per we shall use Fourier series and exponential sums to find
points in V with the variables restricted to the box 8 of the
type (2), so that V N B is non empty and determine the cardi-
nality |V N B| of V N B. We have the following main result:

Theorem 1. Let p be an odd prime, n positive integer and
Q is nonsingular quadratic form. Let V =V 3(Q) be the set
of integer solutions of the congruence (1) in ZZ3 and B be a

box as given in (2) centered at the origin with all m; < p>. If
A = +1. Then

v (B 4+ p>271) if A =,
U,,('% +p3”/2) if A= +1,

where the brackets | . | are used to denote the cardinality of
the set inside the brackets, and

2" (1 + 2"+ &)
Un = {2n (1 Ly 2(1;/2)+1)’

BNV, < { ©)

A=-1,

A=+1. ®
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Historically, there are a lot of known results on the solu-
tions of quadratic forms (mod p), (mod pz) and (mod p™)
( see for example, (Cochrane| (1984, [1989, |1990, |1991);
Cochrane and Hakami| (2012);[Hakamil| (2009, [2011a},[2011bl,
2011c¢| 2012} 20144l [2014b, [2015); [Heath-Brown| (1985,
1991); |Schinzel, Schlickewei, and Schmidt (1980); Wang
(1989,(1990,1993)).

We shall devote the last section to give the proof of Theo-
rem 1. If V is the set of zeros of a nonsingular quadratic form
Q(x), then one can show that

B n
VN8 = |1'T|+O<‘19"/2(logp)3 ) )

for any box B (see|Cochrane| (1984) and Hakami| (2009)). It
is apparent from (5) that [V N B| is nonempty provided

18] > p™/2*! (log p)™" .

For any x, y in Z’;p we let x - y denote the ordinary dot
product, X -y = X', x;y;. Forany x € Zy;, let e,3(x) =
2757’ We use the abbreviation 2x = Zxezr, for complete
sums. The key ingredient in obtaining the idé)ntity in(S)isa
uniform upper bound on the function

2 ep(x-y), y#0,
¢(V,y) = {x<V (6)
|V| _ p3(n—1), y= 0.

In order to show that 8 N V is nonempty we can proceed
as follows. Let a(x) be a complex valued function on Z’[’73
such that a(x) < 0 for all x not in 8. If we can show that
Yxev @(x) > 0, then it will follow that 8 N V is nonempty.
Now a(x) has a finite Fourier expansion

a(x) = > aly) e, (y - ),

y

where

a(y) = p™" ) a(®) e, -y X,

X
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forally e ZZ3. Thus

Dl =) a)epy x)

xeV xeV 'y

=Dlay) D epy %)
y

xeV

=a()|VI+ ) ay) ) ep(y - x).

y#0 xeV

Since a(0) = p~3" Y, a(x), we obtain

D) =p VI ax)+ Y ay) vy, (D)

xeV y#0

where ¢(V,y) is defined by (6). A variation of (7) that is
sometimes more useful is

Dl =p7 Y e+ Y vy, ©®)
xeV X y

which is obtained from (7) by noticing that |[V| = ¢(V,0) +
P~V whence

D) = aO[eV;0) + p*" D1+ " ay) $(V.y)

xeV y#0

= p"a@) + )" ay) p(V.y).
y

Equations (7) and (8) express the incomplete sum ).y a(x)
as a fraction of the complete sum ), a(x) plus an error term.
In general |V| ~ p3®=D so that the fractions in the two equa-
tions are about the same. In fact, if V is defined by a nonsin-
gular quadratic form Q(x) then |V| = p>®~D + O(p") (that is
BV, 0)] < p".

To show that Y,y a(x) is positive, it suffices to show that
the error term is smaller in absolute value than the (positive)
main term on the right-hand side of (7) or (8). One tries to
make an optimal choice of @(x) in order to minimize the error
term. Special cases of (7) and (8) have appeared a number of
times in the literature for different types of algebraic sets V;
see (Chalk| (1963), Tietaviinen| (1967), and [Myerson| (1991)).
The first case treated was to let a(x) be the characteristic
function yg(x) of a subset S of ZZ“ whence (8) gives rise
to formulas of the type

VnS|=p?|S|+ Error.

Equation (5) is obtained in this manner. Particular attention
has been given to the case where S = B, a box of points in
Z;g . Another popular choice for « is let it be a convolution of
two characteristic functions, a@ = ys * yr for S, T C Z",. We
recall that if @(x), SB(x) are complex valued functions defined
on Z#, then the convolution of a(x), B(x) written a * B(x),
is defined by

@ fx) =) eBx-u) = > a@pv),

u u+v=x

forx € Z:;. If we take a(x) = xs *xy7(x) then it is clear from
the definition that a(x) is the number of ways of expressing
xasasums+twiths € S andt € T. Moreover, (S +T)NV
is nonempty if and only if ., a(x) > 0.

We make use of a number of basic properties of finite
Fourier series, which are listed below. They are based on
the orthogonality relationship,

3n
Z ep(x-y) = {g ’

xeZ"
3

y=0,
y#0,

and they can be routinely checked. By viewing Z; as a
Z—module, the Gauss sum

SpQY) = ) ey (QX) +Y ),
XEZZ.%
is well defined whether we takey € Z" ory € ZZ3. Let

a(x), B(x) be complex valued functions on 223 with Fourier
expansions

a(x) = ) ay)ep(x-y), B =) by)epx-y).
y y

Then
@) =) pMa(y) by) e,s(x- y), ©)
y

af(x) = a(x)B(X) = Z (axD)y)ep(x-y),  (10)

y

D @xpx) = [Z a(x)] [Zﬂ(x)], (11)
Dl Pl < (Z |a<x>|] (Z IB(X)I], (12)

Dllar = p ) e, (13)
y X

The last identity is Parseval’s equality.

Fundamental Identity

Let O(x) = O(xy, ..., x,) be a quadratic form with integer
coefficients and p be an odd prime. Consider the congruence
(1):

0(x)=0 (mod p*).

3
Using identities for the Gauss sum S = Zi’ 1 €p (ax*+bx),
one obtains

Lemma 1. [Hakami|(2012), Theorem 1] Suppose n is even,
Q is nonsingular (mod p) and A = A,(Q). Fory € Z", put
y =plyincase ply, (ie., ply: foralli). Then
2
D o),
=0
plyi foralli

¢(V,y) = p?/>7
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with
5 = {1 if 3—jiseven,
TlA if3-jisodd,
and
pi=p*i POy,
wi(y') = {-p* PN ),
0, o)

where Q is the quadratic form associated with the inverse of
the matrix for Q (mod p) .

Back to (8) we saw the identity

Dl =p= Y )+ Y ay) g(v,y).

xeV X y#0

Inserting the value ¢(V,y) in Lemma 1 yields (see[Hakami
(20T11c)),

Lemma 2. (The fundamental identity) For any complex val-
ued a(x) on Z;, if A = +1, then

3

14
dla=p7 Y am + p" Y ay)
XEij, X yi=1
PO (y)
P’ P
+ p*! Z a(py) + p®P72 Z a(p’y)
yi=l1 yi=1
PO (y) plO*(y)
PS ]72
— ptn Z aly) - p7 Z a(py)
yi=1 yi=1
P10 ®) piO"(y)
P
= PR apy). (14)
yi=1
If A = -1, then
[73
Dia=p7 Y am - p" Y ay)
erpg X yi=1
PO (y)
P’ p
+ 3 aty) - PPN apy)
yi=1 yi=1
P10y pio"(y)
[73 pZ
+ pT N ay) - p™ D alpy)
yiml Viml
PO (y) plO*(y)
p
+ pO7 N a(py). (15)

Vi =1

Auxiliary lemmas

For later reference, we construct the following two lem-
mas on estimating the sum Zf,f a(py) and ¥} a(p*y). Let B
be a box of points in Z" as in (2) centered about the origin
with all m; < p3, and view this box as a subset of Z;’p. Let ys
be its characteristic function with Fourier expansion yg(x) =

2yag(y)e(x-y). Let a(x) = yg * xg = 2ya(y)e,s (X - y).
Then for any y € ZZ3 ,

Py (s (mmavil p)
aly) =p l_[ a2 I
=1 \ s (myi/ p?)
where the term in the product is taken to be m; if y; = 0.

Lemma 3. Let B be any box of type (2) viewed as a subset
of Z';,s and a(X) = xg * x8(X). Then we have

2

Za(py) f' [ =Ly

yi=l m; > p? p?

Proof. First,

za<py> $ z

yi=1 x=1

—;@(X)eps (=X - py)

1’
1
= ep(=X-y)
; p3n P
T
== >, a®p”
p xi=1
x=0 ( mod p?)
1
=— Z a(x)
P x=0 ( mod p?)
1
=— Z Z 1. (16)
P ueB veB

u+v=0 ( mod p?)

Now we need to count the number of solutions of the con-
gruence
u+v=0 (mod p?),

with u, v € 8. In fact for each choice of v, there are at most
[T, (lmi/ p?1+ 1) choices for u. So the total number of solu-
tions is less than or equal to []'_, m;([m;/ p*1 + 1). It follows

from (16),
m’] + 1).
p?

We split the product in (17) to get

(o))< 11 I3

i=1 mi<p®  m;=p?

=

A7)

alpy) < — ﬁm,(

yi=1 i=1
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Then by help of this inequality we obtain

yi=1 m;<p? m;>p?
18] 2m;
o 2
p m; > p? p
proving the lemma. O

Lemma 4. Let B be any box of type (2) and a(X) = yg *
x8(X). Then we have

u 1B 2m;
Z a(p’y) < —.
yi=1 p P

m;2p

Proof. The idea of the proof is exactly similar to the ideas
used to prove Lemma 3. O

Proof of Theorem 1

Let B be the box of points in Z" given by (2):
B={xeZ"|la;<xi<a+m;, 1 <i<n}

where a;,m; € Z, 1 < m; < p*, 1 < i < n. Then
|B] = [1., m;, the cardinality of 8. View the box B as a
subset of Z;3 and let yg be it characteristic function with
Fourier expansion yg(x) = Xy ag(y)eys (X - y).

The case A,(Q) = —1:

Consider the congruence (1) and consider (15), the funda-

mental identity (mod p?) when A = —1:

P
dia=p? Y am - p" Y ay)
xeV 3 X yi=1
' PO )
P’ p
+ 3T aty) - PPN apty)
yi=1 yi=1
PO (y) plO*(y)
p3 pZ
+ PN ay) - p™ D alpy)
yi=1 yi=l1
ety PIO"(¥)
P
p(Sn/Z)—3 Za(pzy)
yi=1

Puta = yg * xg = Xy a(y)eys (x - y). Then the Fourier coeffi-
cients of e(x) are given by a(y) = p*a,(y) and by Parseval’s
identity satisfy

Dlawl=p" Y lasP = Y ks =18, (18)
y y y

Consequently from (18),

[73
PO ay) < p Y )l < p
yi=1 y
PO (y)

3n/2-1 |B| . (19)

Besides this we have that the main term in (15) is
4 5 1B
PR =7 ) m e xs = 5 (20)
X X

Also we have by Lemma 3,

P

- 1Bl 2m;

D apn <= ] 5
yi=1 P m;2p? r?

PO
! 2m,
=8 ] 2 21
m; > p?
and by Lemma 4,

)4
_ |8 2m;
p(Sn/Z) 3 Za(pzy) < p(5n/2) 3 i

2
yi=l1 P m;2p p
(n/2) -3 |B| 1—[ 27”’!, (22)
m=p
Now turn back to (15), we have
st
D, @@ <p7 Y a0+ pM R aty)
XEVpg X yi=1
PO (y)
P’ P
+p" Y apy) + ™7 Y aply). (23)
yi=l1 yi=l1
Py

Then by inequalities in (20), (19), (21), and (22) we obtain

82 2 2m;
Z (Y(X) <2 | | 3n/2 1|B| +pn 1|B| 1_[ m;
p?

XV 3 m;>p?
(11/2) 3 |B| I—[ zml (24)
m;zp
But, it easily to see that

PO

X€e VI’3

1
T [V, n8l. (25)

Thus we have (by (24) and (25))

|Vp3 N B| =" (ll%l + p(3”/2)—] +pn—l H 2 %
m; 2 p (26)

+p(n/2)—3 H %)
mizp
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The task now is designation which of the terms
P sy 2 2 and p"D3 ], 2 in (26) is the domi-

nant term. We con51der two cases:
Case (i): We define [ by

Then
L. Assume [ < 5 — 1. Then compare

n—1 2m,
P Hminz p—z‘ B 211—lpn+2
1 T 2(n-1
o [Ty mi P2D T epr m
2n—l
pn—21—2 Hm,-<p2 m;
Zn—l
< 1 <24,

which leads to

n

_ 2m; |B]
n—1 l n
P | | — < 2=

3
m; > p? P P

II. Assume [ > g Then compare

n—1 2m;
p Hmi>P2 7 1 l—l 2m;

P21 = P2 e

;> p?

\n/Zl_[p

m; >

(2 )n/2 2;1/2

\ pn/2

which implies that

n

2m;
pn—l 1_[ _21 < 2n/2p(3n/2)—1‘

m; > p? p

We get by (I) and (II) that

2m; B
pn—l ]_[ <~ < max (2n|p_3|’ 2n/2p(3n/2)—1)

2
m;>p? P

2n |B| + 2n/2 (3n/2)— 1
Case (ii): We define I’ by
mp<my <

Then

<mp <p<mpyp <o <M.

III. Assume I’ < g — 1.Then compare

2)-3 2m; ,
p? | - ol pl?
1 -
> [T~ mi p" Hmi<p mi
2n—l'

p(n/2)—l’ nm,<p m

- on 1_7 4
= pn/2 2

= pn/2 E
2(;1/2)+1

~ >

p

leads to

p <
mzp P p P

IV. Assume I’ > % Then compare

2)-3 2m;
p(n/ ) Hm,}p 2m;

L 2
p(3n/2)—l - pn+2 p

m; > p

\ n+2 1_[ 2[7

m;zp

Z)n—l’

1
< pn+2 (2p

pn+2

implies that

_ 2m; 212
pn/-3 1—[ g . 2 G2l

m;zp P p

Thus by (IIT) and (IV),

B 2(n/2)+1 |B|
p(n/Z) 3 l—[ m; < = =
p D p

mizp
Together, case (i) and case (ii) gives us

2m; 2m;
pn—l 1_[ p_21+ p(n/2)—3 1_[ 71

m;>p? mzp

2(11/2)+1) @ . (2n/2+ &/2
p P p

<(2”+

(/23 1 % < 2(n/2)+1 |_8|
3

@p)t = =

2” (p )(11/2)—1

2n/2

1

p(3n/2) 1

Gnj2)~1
2 ) p :
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We conclude by making use of (26) to get

[V, N8| <2 M2

B 3n/2)- -
(II p(n/2)1+pn1 :
m;>p?
+p(n/2)—3 1 2%)
mi>p
B _ 2(n/2)+1 B
2n{|p_3|+p(3n/2) 1+(2n 7 \ |
+ (o2 4 2<"/ ) (3n/2) 1}
2('1/2)+l |B|

N

= on {[lB +(2n

+ rp(Sn/Z) L4 (211/2 pz“f’) p(Sn/Z)—l ]}

2 (1+2n 4 220) ’
P

4
40on (1 +on/2 4 %;”)p(Sn/Z)—l

(IB\ p 3n/2)—1) ,

//\

where v/, = 2" (1 L oony 2(n/z>+1).
p
The case A,(Q) = +1:

We now examine the case A = +1. Appealing to (14), we
obtain

[73
Da®<p? Y am + p"? > ay)
erp; X y'=1
Pl

2

14
+ P > alpy) + pOr? Z a(p’y’)

y=1 =1

Po" ) pIQ*(y )
2
< @ + p3n/2 1B| + p2n—l@ %
3 7
P m;>p? p
sn2)-2 1Bl 2m;
+p n .
p mzp p
But, once again by (26), we obtain
[Vpng| = (IBI +p s pr T n
m;2p (27)

+puiD=2 [
m;Zp

We do a similar investigation (as before) to determine

which of the quantities ‘%, p2 prl Hm,% and

PP sy 2};'2”' of (27) is the dominant term. Indeed in
2m;
= <

case (1) [ < 7 S

5—1, we have (as we saw earlier) "'l

18|
2" E and when [ < %

-1 2m;
P HmiZPZp_n; _ 1 1—[ 2m;
3n/2 T m/2)+1 2
p p msp P
S e <n/2>+1 l—[ 2p
m/>p
P n/2
)/ =

< PO+ @p

. _ ) /2
which means p"~' ], 2 < Z- p¥/2,

7 > We therefore ob-
tain

Zm,-

B 2n/2
pn—l l_[ 5 < max (zn% , p3n/2
m;>p? p p p
< zn@ + &/2 3n/2'
p? p

n

In case (ii) when I’ < 5—1,we have

p(n/2) 2 Hm,/p p on=1' p(n/2)+1
F Hi:1 n; pn—l’ Hm,-<p n;
2n—l’

S CEEE ey 71

2" p\
pi-1 (E)

on p (n/2)-1
= po/2)-1 (E)

< 2(n/2)+1 ,

2n/2

2 2
id S 7 p3"/2.When U S %,

which means p"/>= ], >, =3

2)-2 2m;
p(n/) Hm‘/p D 2m;

p3n/2 pn+2 : p

< 2[7# p>"2. Thus we get

which means p/?~2 [Ln=p 5

) A
112—2| |

m;zp

2
2m; < Q21 1B . 2"/ P2,

p P p?



QUADRATIC FORMS OVER THE RING Z 3 7

Putting case (i) and case (ii) together, we obtain

5 _ o,
Vs N8| < 2"('17_3' e I
m; = p?

+ D2 ] 2% )
m;zp
n [18l (3n/2) n n/2)+1Y 18|
<2{p3+p +<2 /4:2 (/2)),;3
VA 2_2) p<3n/2>}
20 (1427 +202+1) B
+27 (1 + 22 4+ Z2) p¥ni2
) )
B
— U;l/ (\p_zl +p3n/2),

where v/ = 2" (1 + 2"+ 20/2+1y
Lastly let v, = v/ if A = =l and v, = v’ if A = +1 to
conclude the proof of Theorem 1.

Acknowledgements

The author is most grateful to the referee and the edi-
tors especially Professor Tin-Yan Tam who handle this pa-
per. He would also like to thank his colleague Professor Idir
MECHAI for his assistance in formatting and typesetting this

paper.
References

Chalk, J. H. H. (1963). The number of solutions of congruences in
incomplete residue systems. Canad. J. Math, 15, 191-296.

Cochrane, T. (1984). Small solutions of congruences. PhD thesis,
Universityof Michigan.

Cochrane, T. (1989). Small zeros of quadratic congruences
(mod p). J. Number Theory, 33(3), 286-292.

Cochrane, T. (1990). Small zeros of quadratic congruences
(mod p), I.  Proceedings of the Illinois Number Theory
Conference (1989), 33(3), 91-94. (Birkhéuser, Boston)

Cochrane, T. (1991). Small zeros of quadratic congruences
(mod p), 1. J. Number Theory, 33(1), 92-99.

Cochrane, T., & Hakami, A. (2012). Small zeros of quadratic
congruences (mod p?). Proceedings of the American Math-
ematical Society, 140(12), 4041-4052.

Hakami, A. (2009). Small zeros of quadratic congruences to a
prime power modulus. PhD thesis, Kansas State University.

Hakami, A. (2011a). On Cochrane’s estimate for small zeros of
quadratic forms (mod p). Far East J. Math. Sci., 50(2), 151-
157.

Hakami, A. (2011b). Small zeros of quadratic forms (mod p?). JP
J. Algebra Number Theory Appl., 17(2), 141-162.

Hakami, A. (2011c). Small zeros of quadratic forms (mod p?).
Adv. Appl. Math. Sci., 9(1), 47-69.

Hakami, A. (2012). Weighted quadratic partitions (mod p™) , a new
formula and new demonstration. Tamaking J. Math., 43(1),
11-19.

Hakami, A. (2014a). Estimates for lattice points of quadratic forms
with integral coefficients modulo a prime number square.
Journal of Inequalities and Applications. doi: 10.1186/
1029-242X-2014-290

Hakami, A. (2014b). Small zeros of quadratic forms (mod p™).
Ramanujan J. doi: 10.1007/s11139-014-9614-3

Hakami, A. (2015). Estimates for lattice points of quadratic forms
with integral coefficients modulo a prime number square II.
Journal of Inequalities and Applications. doi: 10.1186/
s13660-015-0637-0

Heath-Brown, D. R. (1985). Small solutions of quadratic congru-
ences. Glasgow Math. J, 27.

Heath-Brown, D. R. (1991). Small solutions of quadratic congru-
ences, II. Mathematika, 38(2).

Myerson, G. (1991). The distribution of rational points on varieties
defined over a finite field. Mathematika, 28, 153-159.
Schinzel, A., Schlickewei, H. P., & Schmidt, W. M. (1980). Small
solutions of quadratic congruences and small fractional parts

of quadratic forms. Acta Arith, 37, 241-248.

Tietdvdinen, A. (1967). On the solvability of equations in incom-
plete finite fields. Ann. Unviv. Turku. Ser. Al, 102, 1-13.

Wang, Y. (1989). On small zeros of quadratic forms over finite
fields. J. Number Theory, 31, 272-284. (World Sci. Publ.,
Teaneck, NJ)

Wang, Y. (1990). On small zeros of quadratic forms over finite
fields. Algebraic structures and number theory, (Hong Kong,
1988), 269-274. (World Sci. Publ., Teaneck, NJ)

Wang, Y. (1993). On small zeros of quadratic forms over finite
fields II. Acta Math. Sinica (N.S.), 9(4), 382-389. (A Chi-
nese summary appears in Acta Math. Sinica, (37) (5) (1994),
719-720)



	Introduction
	Fundamental Identity
	Auxiliary lemmas
	Proof of Theorem 1
	Acknowledgements
	References

