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Counting lattice points of quadratic forms over the ring Zp3
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Let Q(x) = Q(x1, x2, . . . , xn) be a quadratic form in n-variables with integer coefficients. We
obtain bounds on the lattice points over the ring Zn

p3 to the congruence Q(x) ≡ 0 (mod p3) in a
general rectangular box. We use Fourier series and exponential sums to obtain our results.

Introduction

Let Q(x) = Q(x1, x2, ..., xn) =
∑

16i6 j6n ai jxix j, be a
nonsingular quadratic form with integer coefficients in n-
variables. Let Vp3,Z = Vp3,Z(Q) be the set of integer solutions
of the equation defined by

Q(x) ≡ 0 (mod p3), (1)

(in Zn
p3 ) and and let B be a box defined by

B = {x ∈ Zn | ai 6 xi < ai + mi, 1 6 i 6 n } , (2)

where ai,mi ∈ Z, and 0 6 mi 6 p3 for 1 6 i 6 n. Let |B|
denote the cardinality of the box B. We call the box a cube
of size m if mi = m for all i. Suppose that n is even and and
AQ is the n × n defining matrix for Q(x). Let

∆ = ∆p(Q) =

 (−1)
n
2 det AQ

p

 ,
where (./p) denotes the Legendre-Jacobi symbol. In this pa-
per we shall use Fourier series and exponential sums to find
points in V with the variables restricted to the box B of the
type (2), so that V ∩B is non empty and determine the cardi-
nality |V ∩ B| of V ∩ B. We have the following main result:

Theorem 1. Let p be an odd prime, n positive integer and
Q is nonsingular quadratic form. Let V = Vp3 (Q) be the set
of integer solutions of the congruence (1) in Zn

p3 and B be a
box as given in (2) centered at the origin with all mi 6 p3. If
∆ = ±1. Then∣∣∣B ∩ Vp3

∣∣∣ 6

υn

(
|B|

p3 + p(3n/2)−1
)

i f ∆ = −1,

υn

(
|B|

p3 + p3n/2
)

i f ∆ = +1,
(3)

where the brackets | . | are used to denote the cardinality of
the set inside the brackets, and

υn =

2n
(
1 + 2n + 2(n/2)+1

p

)
, ∆ = −1,

2n
(
1 + 2n + 2(n/2)+1

)
, ∆ = +1.

(4)

Corresponding Author Email: aalhakami@jazanu.edu.sa

Historically, there are a lot of known results on the solu-
tions of quadratic forms (mod p), (mod p2) and (mod pm)
( see for example, Cochrane (1984, 1989, 1990, 1991);
Cochrane and Hakami (2012); Hakami (2009, 2011a, 2011b,
2011c, 2012, 2014a, 2014b, 2015); Heath-Brown (1985,
1991); Schinzel, Schlickewei, and Schmidt (1980); Wang
(1989, 1990, 1993)).

We shall devote the last section to give the proof of Theo-
rem 1. If V is the set of zeros of a nonsingular quadratic form
Q(x), then one can show that

|V ∩ B| =
|B|

p
+ O

(
pn/2 (

log p
)3n

)
, (5)

for any box B (see Cochrane (1984) and Hakami (2009)). It
is apparent from (5) that |V ∩ B| is nonempty provided

|B| � p(n/2)+1 (
log p

)3n .

For any x, y in Zn
p3 , we let x · y denote the ordinary dot

product, x · y =
∑n

i=1 xiyi. For any x ∈ Zp3 , let ep3 (x) =

e2πix/p3
. We use the abbreviation

∑
x =

∑
x∈Zn

p3
for complete

sums. The key ingredient in obtaining the identity in (5) is a
uniform upper bound on the function

φ(V, y) =


∑

x∈V
ep3 (x · y), y , 0,

|V | − p3(n−1), y = 0.
(6)

In order to show that B ∩ V is nonempty we can proceed
as follows. Let α(x) be a complex valued function on Zn

p3

such that α(x) 6 0 for all x not in B. If we can show that∑
x∈V α(x) > 0, then it will follow that B ∩ V is nonempty.

Now α(x) has a finite Fourier expansion

α(x) =
∑

y
a(y) ep3 (y · x),

where
a(y) = p−3n

∑
x
α(x) ep3 (−y · x),

1
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for all y ∈ Zn
p3 . Thus∑

x∈V
α(x) =

∑
x∈V

∑
y

a(y) ep3 (y · x)

=
∑

y
a(y)

∑
x∈V

ep3 (y · x)

= a(0) |V | +
∑
y,0

a(y)
∑
x∈V

ep3 (y · x).

Since a(0) = p−3n ∑
x α(x), we obtain∑

x∈V
α(x) = p−3n |V |

∑
x
α(x) +

∑
y,0

a(y) φ(V, y), (7)

where φ(V, y) is defined by (6). A variation of (7) that is
sometimes more useful is∑

x∈V
α(x) = p−3

∑
x
α(x) +

∑
y

a(y) φ(V, y), (8)

which is obtained from (7) by noticing that |V | = φ(V, 0) +

p3(n−1), whence∑
x∈V

α(x) = a(0)[φ(V, 0) + p3(n−1)] +
∑
y,0

a(y) φ(V, y)

= p3n−3a(0) +
∑

y
a(y) φ(V, y).

Equations (7) and (8) express the incomplete sum
∑

x∈V α(x)
as a fraction of the complete sum

∑
x α(x) plus an error term.

In general |V | ≈ p3(n−1) so that the fractions in the two equa-
tions are about the same. In fact, if V is defined by a nonsin-
gular quadratic form Q(x) then |V | = p3(n−1) + O(pn) (that is
|φ(V, 0)| � pn).

To show that
∑

x∈V α(x) is positive, it suffices to show that
the error term is smaller in absolute value than the (positive)
main term on the right-hand side of (7) or (8). One tries to
make an optimal choice of α(x) in order to minimize the error
term. Special cases of (7) and (8) have appeared a number of
times in the literature for different types of algebraic sets V;
see Chalk (1963), Tietäväinen (1967), and Myerson (1991).
The first case treated was to let α(x) be the characteristic
function χS (x) of a subset S of Zn

p3 , whence (8) gives rise
to formulas of the type

|V ∩ S | = p−3 |S | + Error.

Equation (5) is obtained in this manner. Particular attention
has been given to the case where S = B, a box of points in
Zn

p3 . Another popular choice for α is let it be a convolution of
two characteristic functions, α = χS ∗ χT for S ,T ⊆ Zn

p3 . We
recall that if α(x) , β(x) are complex valued functions defined
on Zn

p3 , then the convolution of α(x) , β(x) written α ∗ β(x),
is defined by

α ∗ β(x) =
∑

u
α(u)β(x − u) =

∑
u+v=x

α(u) β(v),

for x ∈ Zn
p3 . If we take α(x) = χS ∗χT (x) then it is clear from

the definition that α(x) is the number of ways of expressing
x as a sum s + t with s ∈ S and t ∈ T. Moreover, (S + T ) ∩ V
is nonempty if and only if

∑
x∈V α(x) > 0.

We make use of a number of basic properties of finite
Fourier series, which are listed below. They are based on
the orthogonality relationship,∑

x∈Zn
p3

ep3 (x · y) =

p3n, y = 0,
0, y , 0,

and they can be routinely checked. By viewing Zn
p3 as a

Z−module, the Gauss sum

S p(Q, y) =
∑

x∈Zn
p3

ep3 (Q(x) + y · x),

is well defined whether we take y ∈ Zn or y ∈ Zn
p3 . Let

α(x) , β(x) be complex valued functions on Zn
p3 with Fourier

expansions

α(x) =
∑

y
a(y) ep3 (x · y), β(x) =

∑
y

b(y) ep3 (x · y).

Then
α ∗ β(x) =

∑
y

p3na(y) b(y) ep3 (x · y), (9)

αβ(x) = α(x)β(x) =
∑

y
(a ∗ b)(y) ep3 (x · y), (10)

∑
x

(α ∗ β)(x) =

∑
x
α(x)

 ∑
x
β(x)

 , (11)

∑
x
|(α ∗ β)(x)| 6

∑
x
|α(x)|

 ∑
x
|β(x)|

 , (12)∑
y
|a(y)|2 = p−3n

∑
x
|α(x)|2. (13)

The last identity is Parseval’s equality.

Fundamental Identity

Let Q(x) = Q(x1, ..., xn) be a quadratic form with integer
coefficients and p be an odd prime. Consider the congruence
(1):

Q(x) ≡ 0 (mod p3).

Using identities for the Gauss sum S =
∑p3

x=1 ep3 (ax2+bx),
one obtains

Lemma 1. [Hakami (2012), Theorem 1] Suppose n is even,
Q is nonsingular (mod p) and ∆ = ∆p(Q). For y ∈ Zn, put
y′ = p− jy in case p |y , (i.e., p |yi for all i). Then

φ(V, y) = p(3n/2)−3
2∑

j=0
p j |yi f or all i

δ j p jn/2ω j(y′),
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with

δ j =

1 i f 3 − j is even,
∆ i f 3 − j is odd,

and

ω j(y′) =


p3− j − p2− j, p3− j |Q∗(y′),
−p2− j, p2− j ‖Q∗(y′),
0, p2 - Q∗(y′),

where Q∗ is the quadratic form associated with the inverse of
the matrix for Q (mod p) .

Back to (8) we saw the identity∑
x∈V

α(x) = p−3
∑

x
α(x) +

∑
y,0

a(y) φ(V, y).

Inserting the value φ(V, y) in Lemma 1 yields (see Hakami
(2011c)),

Lemma 2. (The fundamental identity) For any complex val-
ued α(x) on Zn

p3 , if ∆ = +1, then

∑
x∈Vp3

α(x) = p−3
∑

x
α(x) + p3n/2

p3∑
yi=1

p3 |Q∗(y)

a(y)

+ p2n−1
p2∑

yi=1
p2 |Q∗(y)

a(py) + p(5n/2)−2
p∑

yi=1
p|Q∗(y)

a(p2y)

− p(3n/2)−1
p3∑

yi=1
p2 |Q∗(y)

a(y) − p2n−2
p2∑

yi=1
p|Q∗(y)

a(py)

− p(5n/2)−3
p∑

yi=1

a(p2y). (14)

If ∆ = −1, then

∑
x∈Vp3

α(x) = p−3
∑

x
α(x) − p3n/2

p3∑
yi=1

p3 |Q∗(y)

a(y)

+ p2n−1
p2∑

yi=1
p2 |Q∗(y)

a(py) − p(5n/2)−2
p∑

yi=1
p|Q∗(y)

a(p2y)

+ p(3n/2)−1
p3∑

yi=1
p2 |Q∗(y)

a(y) − p2n−2
p2∑

yi=1
p|Q∗(y)

a(py)

+ p(5n/2)−3
p∑

yi=1

a(p2y). (15)

Auxiliary lemmas

For later reference, we construct the following two lem-
mas on estimating the sum

∑p2

yi a(py) and
∑p

yi a(p2y). Let B
be a box of points in Zn as in (2) centered about the origin
with all mi 6 p3, and view this box as a subset of Zn

p3 . Let χB
be its characteristic function with Fourier expansion χB(x) =∑

y aB(y)ep3 (x · y). Let α(x) = χB ∗ χB =
∑

y a(y)ep3 (x · y).
Then for any y ∈ Zn

p3 ,

a(y) = p−3n
n∏

i=1

 sin2
(
πmiyi/p3

)
sin2 (

πyi/p3)
,

where the term in the product is taken to be mi if yi = 0.

Lemma 3. Let B be any box of type (2) viewed as a subset
of Zn

p3 and α(x) = χB ∗ χB(x). Then we have

p2∑
yi=1

a(py) 6
|B|

pn

∏
mi>p2

2mi

p2 .

Proof. First,

p2∑
yi=1

a(py) =

p2∑
yi=1

p3∑
xi=1

1
p3nα(x)ep3 (−x · py)

=

p3∑
xi=1

1
p3nα(x)

p2∑
yi=1

ep2 (−x · y)

=
1

p3n

p2∑
xi=1

x≡ 0 ( mod p2)

α(x)p2n

=
1
pn

∑
x≡ 0 ( mod p2)

α(x)

=
1
pn

∑
u∈B

∑
v∈B

1.

u+v≡0 ( mod p2)

(16)

Now we need to count the number of solutions of the con-
gruence

u + v ≡ 0 (mod p2),

with u, v ∈ B. In fact for each choice of v, there are at most∏n
i=1([mi/p2] + 1) choices for u. So the total number of solu-

tions is less than or equal to
∏n

i=1 mi([mi/p2] + 1). It follows
from (16),

p2∑
yi=1

a(py) 6
1
pn

n∏
i=1

mi

([
mi

p2

]
+ 1

)
. (17)

We split the product in (17) to get
n∏

i=1

mi

([
mi

p2

]
+ 1

)
6

∏
mi<p2

mi

∏
mi>p2

mi

(
mi

p2 + 1
)
.
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Then by help of this inequality we obtain

p2∑
yi=1

a(py) 6
1
pn

∏
mi<p2

mi

∏
mi>p2

mi

(
mi

p2 + 1
)

6
|B|

pn

∏
mi>p2

2mi

p2 ,

proving the lemma. �

Lemma 4. Let B be any box of type (2) and α(x) = χB ∗
χB(x). Then we have

p∑
yi=1

a(p2y) 6
|B|

p2n

∏
mi>p

2mi

p
.

Proof. The idea of the proof is exactly similar to the ideas
used to prove Lemma 3. �

Proof of Theorem 1

Let B be the box of points in Zn given by (2):

B = {x ∈ Zn | ai 6 xi < ai + mi, 1 6 i 6 n }

where ai,mi ∈ Z, 1 6 mi 6 p3, 1 6 i 6 n. Then
|B| =

∏n
i=1 mi, the cardinality of B. View the box B as a

subset of Zn
p3 and let χB be it characteristic function with

Fourier expansion χB(x) =
∑

y aB(y)ep3 (x · y).
The case ∆p(Q) = −1:
Consider the congruence (1) and consider (15), the funda-

mental identity (mod p3) when ∆ = −1:

∑
x∈Vp3

α(x) = p−3
∑

x
α(x) − p3n/2

p3∑
yi=1

p3 |Q∗(y)

a(y)

+ p2n−1
p2∑

yi=1
p2 |Q∗(y)

a(py) − p(5n/2)−2
p∑

yi=1
p|Q∗(y)

a(p2y)

+ p(3n/2)−1
p3∑

yi=1
p2 |Q∗(y)

a(y) − p2n−2
p2∑

yi=1
p|Q∗(y)

a(py)

+ p(5n/2)−3
p∑

yi=1

a(p2y).

Put α = χB ∗ χB =
∑

y a(y)ep3 (x · y). Then the Fourier coeffi-
cients of α(x) are given by a(y) = p3na2

B
(y) and by Parseval’s

identity satisfy∑
y
|a(y)| = p3n

∑
y
|aB(y)|2 =

∑
y
|χB(y)|2 = |B| . (18)

Consequently from (18),

p(3n/2)−1
p3∑

yi=1
p2 |Q∗(y)

a(y) 6 p3n/2−1
∑

y
|a(y)| 6 p3n/2−1 |B| . (19)

Besides this we have that the main term in (15) is

p−3
∑

x
α(x) = p−2

∑
x
χB ∗ χB(x) =

|B|
2

p3 . (20)

Also we have by Lemma 3,

p2n−1
p2∑

yi=1
p2 |Q∗(y)

a(py) 6 p2n−1 |B|

pn

∏
mi>p2

2mi

p2

= pn−1 |B|
∏

mi>p2

2mi

p2 , (21)

and by Lemma 4,

p(5n/2)−3
p∑

yi=1

a(p2y) 6 p(5n/2)−3 |B|

p2n

∏
mi>p

2mi

p

= p(n/2)−3 |B|
∏

mi>p

2mi

p
. (22)

Now turn back to (15), we have

∑
x∈Vp3

α(x) 6 p−3
∑

x
α(x) + p(3n/2)−1

p3∑
yi=1

p2 |Q∗(y)

a(y)

+ p2n−1
p2∑

yi=1
p2 |Q∗(y)

a(py) + p5n/2−3
p∑

yi=1

a(p2y). (23)

Then by inequalities in (20), (19), (21), and (22) we obtain∑
x∈Vp3

α(x) 6
|B|

2

p3 + p3n/2−1 |B| + pn−1 |B|
∏

mi>p2

2mi

p2

+ p(n/2)−3 |B|
∏

mi>p

2mi

p
. (24)

But, it easily to see that∑
x∈Vp3

α(x) >
1
2n |B|

∣∣∣Vp3 ∩ B
∣∣∣ . (25)

Thus we have (by (24) and (25))∣∣∣Vp3 ∩ B
∣∣∣ = 2n

 |B|p3 + p(3n/2)−1 + pn−1 ∏
mi>p2

2mi
p2

+ p(n/2)−3 ∏
mi>p

2mi
p

)
.

(26)
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The task now is designation which of the terms |B|

p3 ,

pn−1 ∏
mi>p2

2mi
p2 and p(n/2)−3 ∏

mi>p
2mi

p in (26) is the domi-
nant term. We consider two cases:

Case (i): We define l by

m1 6 m2 6 · · · 6 ml < p2 6 ml+1 6 · · · 6 mn.

Then
I. Assume l 6 n

2 − 1. Then compare

pn−1 ∏
mi>p2

2mi
p2

1
p3

∏n
i=1 mi

=
2n−l pn+2

p2(n−l) ∏
mi<p2 mi

=
2n−l

pn−2l−2 ∏
mi<p2 mi

6
2n−l

1 · 1
6 2n,

which leads to

pn−1
n∏

mi>p2

2mi

p2 6 2n |B|

p3 .

II. Assume l > n
2 . Then compare

pn−1 ∏
mi>p2

2mi
p2

p(3n/2)−1 =
1

pn/2

∏
mi>p2

2mi

p2

6
1

pn/2

∏
mi>p2

2p

6
1

pn/2 (2p)n/2 = 2n/2,

which implies that

pn−1
n∏

mi>p2

2mi

p2 6 2n/2 p(3n/2)−1.

We get by (I) and (II) that

pn−1
∏

mi>p2

2mi

p2 6 max
(
2n |B|

p3 , 2n/2 p(3n/2)−1
)

6 2n |B|

p3 + 2n/2 p(3n/2)−1.

Case (ii): We define l′ by

m1 6 m2 6 · · · 6 ml′ < p 6 ml′+1 6 · · · 6 mn.

Then

III. Assume l′ 6 n
2 − 1.Then compare

p(n/2)−3 ∏
mi>p

2mi
p

1
p3

∏n
i=1 mi

=
2n−l′ pn/2

pn−l′ ∏
mi<p mi

=
2n−l′

p(n/2)−l′ ∏
mi<p mi

6
2n

pn/2

( p
2

)l′

6
2n

pn/2

( p
2

)(n/2)−1

6
2(n/2)+1

p
,

leads to

p(n/2)−3
n∏

mi>p

2mi

p
6

2(n/2)+1

p
|B|

p3 .

IV. Assume l′ > n
2 . Then compare

p(n/2)−3 ∏
mi>p

2mi
p

p(3n/2)−1 =
1

pn+2

∏
mi>p

2mi

p

6
1

pn+2

∏
mi>p

2p2

6
1

pn+2 (2p2)n−l′

6
1

pn+2 (2p2)n/2 =
2n/2

p2 ,

implies that

p(n/2)−3
n∏

mi>p

2mi

p
6

2n/2

p2 p(3n/2)−1.

Thus by (III) and (IV),

p(n/2)−3
∏

mi>p

mi 6
2(n/2)+1

p
|B|

p3 +
2n/2

p2 p(3n/2)−1.

Together, case (i) and case (ii) gives us

pn−1
∏

mi>p2

2mi

p2 + p(n/2)−3
∏

mi>p

2mi

p

6

(
2n +

2(n/2)+1

p

)
|B|

p3 +

(
2n/2 +

2n/2

p2

)
p(3n/2)−1.
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We conclude by making use of (26) to get

∣∣∣Vp3 ∩ B
∣∣∣ 6 2n

 |B|p3 + p(3n/2)−1 + pn−1 ∏
mi>p2

2mi
p2

+ p(n/2)−3 ∏
mi>p

2mi
p

)
6 2n

{
|B|

p3 + p(3n/2)−1 +
(
2n + 2(n/2)+1

p

)
|B|

p3

+
(
2n/2 + 2(n/2)

p2

)
p(3n/2)−1

}
= 2n

{[
|B|

p3 +
(
2n + 2(n/2)+1

p

)
|B|

p3

]
+

[
p(3n/2)−1 +

(
2n/2 + 2(n/2)

p2

)
p(3n/2)−1

]}
= 2n

(
1 + 2n + 2(n/2)+1

p

)
|B|

p3

+2n
(
1 + 2n/2 + 2(n/2)

p2

)
p(3n/2)−1

6 υ′n
(
|B|

p3 + p(3n/2)−1
)
,

where υ′n = 2n
(
1 + 2n + 2(n/2)+1

p

)
.

The case ∆p(Q) = +1:

We now examine the case ∆ = +1. Appealing to (14), we
obtain

∑
x∈Vp3

α(x) 6 p−3
∑

x
α(x) + p3n/2

p3∑
y′=1

p3 |Q∗(y′)

a(y′)

+ p2n−1
p2∑

y′=1
p2 |Q∗(y′)

a(py′) + p(5n/2)−2
p∑

y′=1
p|Q∗(y′)

a(p2y′)

6
|B|

2

p3 + p3n/2 |B| + p2n−1 |B|

pn

∏
mi>p2

2mi

p2

+ p(5n/2)−2 |B|

p2n

∏
mi>p

2mi

p
.

But, once again by (26), we obtain

∣∣∣Vp3 ∩ B
∣∣∣ = 2n

 |B|p3 + p(3n/2) + pn−1 ∏
mi>p2

2mi
p2

+ p(n/2)−2 ∏
mi>p

2mi
p

)
.

(27)

We do a similar investigation (as before) to determine
which of the quantities |B|

p3 , p3n/2, pn−1 ∏
mi

2mi
p2 and

p(n/2)−2 ∏
mi>p

2mi
p2 of (27) is the dominant term. Indeed in

case (i) l 6 n
2−1, we have (as we saw earlier) pn−1 ∏

mi

2mi
p2 6

2n |B|
p3 , and when l 6 n

2 ,

pn−1 ∏
mi>p2

2mi
p2

p3n/2 =
1

p(n/2)+1

∏
mi>p2

2mi

p2

6
1

p(n/2)+1

∏
mi>p2

2p

6
1

p(n/2)+1 (2p)n/2 =
2n/2

p
,

which means pn−1 ∏
mi

2mi
p2 6 2n/2

p p3n/2. We therefore ob-
tain

pn−1
∏

mi>p2

2mi

p2 6 max
(
2n |B|

p3 ,
2n/2

p
p3n/2

)

6 2n |B|

p3 +
2n/2

p
p3n/2.

In case (ii) when l′ 6 n
2 − 1, we have

p(n/2)−2 ∏
mi>p

2mi
p

1
p3

∏n
i=1 mi

=
2n−l′ p(n/2)+1

pn−l′ ∏
mi<p mi

=
2n−l′

p(n/2)−l′−1 ∏
mi<p mi

6
2n

p(n/2)−1

( p
2

)l′

6
2n

p(n/2)−1

( p
2

)(n/2)−1

6 2(n/2)+1,

which means p(n/2)−2 ∏
mi>p

2mi
p2 6 2n/2

p2 p3n/2. When l′ 6 n
2 ,

p(n/2)−2 ∏
mi>p

2mi
p

p3n/2 =
1

pn+2

∏
mi>p

2mi

p

6
1

pn+2

∏
mi>p

2p2

6
1

pn+2 (2p2)n−l′

6
1

pn+2 (2p2)n/2 =
2n/2

p2 ,

which means p(n/2)−2 ∏
mi>p

2mi
p 6 2n/2

p2 p3n/2. Thus we get

p(n/2)−2
∏

mi>p

2mi

p
6 2(n/2)+1 |B|

p3 +
2n/2

p2 p3n/2.
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Putting case (i) and case (ii) together, we obtain

∣∣∣Vp3 ∩ B
∣∣∣ 6 2n

 |B|p3 + p(3n/2) + pn−1 ∏
mi>p2

2mi
p2

+ p(n/2)−2 ∏
mi>p

2mi
p

)
6 2n

{
|B|

p3 + p(3n/2) +
(
2n + 2(n/2)+1

)
|B|

p3

+
(

2n/2

p + 2(n/2)

p2

)
p(3n/2)

}
= 2n

(
1 + 2n + 2(n/2)+1

)
|B|

p3

+2n
(
1 + 2n/2

p + 2(n/2)

p2

)
p3n/2

= υ′′n
(
|B|

p2 + p3n/2
)
,

where υ′′n = 2n (1 + 2n + 2(n/2)+1).
Lastly let υn = υ′ if ∆ = −1 and υn = υ′′ if ∆ = +1 to

conclude the proof of Theorem 1.
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