
Alabama Journal of Mathematics
40 (2016)

ISSN 2373-0404

Solutions of Equations Reducible to the Form zn(1 − z)m = d
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Many equations can be converted to the form zn(1− z)m = d with n, m integer. In this paper, we
show how this type of equation can be solved efficiently. The main advantage of our method
is that the complex roots are indexed by a parameter k, where k must be even if d > 0 and
odd if d < 0. For each k, the roots can then be found by solving a simple equation. We also
give narrow bounds for all roots. Though we have no proof, we found experimentally that the
complex roots are ordered according to their modulus by k: If m > 0, the modulus decreases
with k, and if m < 0, it increases with k. This allows one to select specific complex roots,
something not possible when using standard root-finding algorithms.

Introduction

In this paper, we consider the solution of the following
equation for z:

zn(1 − z)m = d. (1)

This equation appears in Syski (1960), and it was used to find
the waiting time of the En/Em/1 queue, a one server queue
with Erlang arrivals and Erlang service times. In Grassmann
(2011), we provided a solution method to solve this equation
for the case that n and m are natural numbers, and that d > 0.
Here, we generalize this method to deal with any integers n
and m, and any real number d.

The main contribution of this paper is a novel method to
find the complex roots of (1), which is important since all
except at most 4 roots are complex. The complex roots are
indexed by a parameter k, where k must be even if d > 0 and
odd if d < 0. For each k, one only needs to solve a simple
equation for a single variable. Also, in the over 40’000 cases
we observed, the absolute value (modulus) of the solution
decreased with k if m > 0, and increased with k is m < 0.
Getting the roots ordered by their modulus is a definite ad-
vantage over the methods of Laguerre Kincaid and Cheney
(2002) or Newton Press, Flannery, Teukolsky, and Vetterling
(1986). Even if the roots would not be ordered, the fact
that they are indexed by k is a definite advantage. Specifi-
cally, in Newton’s method, there is no way to determine to
which root the algorithm converges because the domain of
attraction is fractal (Kincaid & Cheney, 2002, page 127). In
fact, to avoid finding roots already found, it is suggested to
deflate the polynomial Kincaid and Cheney (2002), Press et
al. (1986), but this leads to polynomials with all coefficients
non-zero. As a consequence, the number of operations to
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find all roots is O((n + m)2) as opposed to O(n + m) for our
method.

Though the problem of solving equations was very active
in the past, there is not much recent literature on this topic
aside from textbooks. For a review of the older literature, see
Kulkarni (2006) and references therein. In this paper, we use
polar coordinates, an approach also used by Pukhta (2011).

To justify the importance of equation (1), note that any
equation of degree less than 6 can be converted to a similar
form by Tschirnhaus transformations (Tschirnhaus (2003),
citation from Adamchik and Jeffrey (2003)). Consider, e.g. a
polynomial of degree 5, which can be converted to

x5 + px + q = 0.

If we set z = −xp/q, then this equation can be written as

z5

1 − z
= −

p5

q4 ,

and this has the form of (1) with n = 5 and m = −1, provided
p and q are real. Also, all Bring radicals with real coeffi-
cients, that is, solutions of the equations xn − x + c = 0 can
be brought into this form.

As a second example, consider the discrete-time renewal
process. In a renewal process, we consider an item, such as a
light bulb, which is subject to failure and has to be replaced.
If pi is the probability that the item has a lifetime of i, and rn

is the probability that the item fails at time n, we have:

rn = rn−1 p1 + rn−2 p2 + . . . .

If pi = 0 for i > b, and pi = qi/c, 1 ≤ i ≤ b, with c =
∑b

i=1 qi,
we obtain

rn = rn−1q/c + rn−2q2/c + . . . + rn−bqb/c. (2)

This is a difference equation, and we set set rn = xn. Af-
ter substituting this expression for rn and dividing by xn, we
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obtain for qx , 1

1 =
1
c

b∑
i=1

(q/x)i =
1
c

b∑
i=0

(q/x)i −
1
c

=
1
c

1 − (q/x)b+1

1 − q/x
−

1
c
.

If y = q/x, this yields

(c + 1)(1 − y) = 1 − yb+1

or

c − (c + 1)y = c
(
1 −

c + 1
c

y
)

= −yb+1.

Setting z = c+1
c y, this yields

zb+1(1 − z)−1 = −(c + 1)b+1c−b.

Note that if q = 1, one obtains the uniform distribution.
Generally, given an equation of the form

(c1 + c2x)n(c3 + c4x)m = d0,

we first set y = c1 + c2x to obtain yn(d1 − d2y)m = d0, where
d1 = c3 − c1c4/c2 and d2 = c4/c2. We then set z = d2

d1
y, and

after minor calculations, this yields

zn(1 − z)m =
dn

2

dn+m
1

d0.

To simplify our task, we make the following assumptions.
Except for cases where the solution of (1) is trivial, these
assumptions do not lead to any loss of generality.

1. d , 0. If d = 0, the only solutions of (1) are 0 and 1.
2. n + m , 0. If n + m = 0, we merely have to solve the

binomial equation
(

z
z−1

)n
= d.

3. n + m > 0. If n + m < 0, we convert the equation to
z−n(1 − z)−m = d−1, and this has the form of (1).

4. n > m. If n < m, let y = 1 − z, and we have
ym(1 − y)n = d, which has the form of (1).
Note that our assumptions imply that n > 0. On the other
hand, m can be positive or negative.

We now first describe how to find the real roots of (1), and
then how to find the complex roots.

The Real Roots

Let f (z) = zn(1 − z)m, and note that f (z) has a stationary
point at zs = n

n+m . This follows because f ′(z), the derivative
of f (z), is equal to

f ′(z) = zn−1(1 − z)m−1(n − z(m + n)). (3)

Clearly, zs is between 0 and 1 if m > 0, but if m < 0, zs > 1.
In principle, we now have to deal with 4 intervals, which are,
if m > 0, (−∞, 0), (0, zs], [zs, 1) and (1,∞). If d = f (zs),
there is a double root of f (z) = d at zs. We associate one root
with the interval ending at zs, and the second one with the

interval starting at zs. Except for the interval (0, 1), we have
to consider 4 possibilities if m > 0, depending on whether
n and m are even or odd. This yields 8 cases, in addition to
the cases arising for the interval (0, 1), meaning there are 10
cases to consider for m > 0. Another 10 cases arise if m < 0.
However, we were able to restrict the number of cases to 4 for
m > 0, and 4 for m < 0, as shown by the following theorem.

Theorem 1. If zs = n
n+m , u = n+m

√
|d| and m > 0, then each of

the following intervals contains exactly one root of f (z) = d,
given the conditions as stated, and there are no roots outside
these intervals.

1. The interval (−u, 0) contains exactly one root if
(−1)nd > 0.

2. The intervals (0, zs] contains exactly one root if 0 < d ≤
f (zs).

3. The interval [zs, 1) contains exactly one root if 0 < d ≤
f (zs).

4. The interval (1, u + 1) contains exactly one root if
(−1)md > 0.
If m < 0, only the intervals listed below can contain roots,
and under the conditions stated, each interval contains ex-
actly one root.

1. The interval (a, 0), with a = min(−1,−2−m/(n+m)u) con-
tains exactly one root if (−1)nd > 0.

2. The interval (0, 1) contains exactly one root if d > 0.
3. The interval (1, zs] contains exactly one root if d ≤

f (zs) < 0 or d ≥ f (zs) > 0.
4. The interval [zs, u) contains exactly one root if

(−1)md ≥ f (zs).

Instead of considering the roots of f (z) = d, we consider
the roots of | f (z)| = |d|. This is possible because f (z) = d and
| f (z)| = |d| have the same roots as long as f (z) has the same
sign as d. We have

| f (z)| = (−1)n f (z) z < 0
| f (z)| = f (z) 0 < z < 1

| f (z)| = (−1)m f (z) z > 1.

Hence, for z < 0, f (z) is positive if n is even, and negative
if n is odd. It follows that for z < 0, f (z) and d have the
same sign if (−1)nd > 0, that is, | f (z)| = |d| implies f (z) = d
if d(−1)n > 0. A similar argument shows that for z > 1,
| f (z)| = |d| implies f (z) = d if (−1)md > 0. Also note that

| f (z)| = |z|n|z − 1|m.

The intervals of Theorem 1 are chosen such that | f (z)| is con-
tinuous and monotonic within the interval. Because of the
intermediate value theorem, the interval (a1, a2) contains ex-
actly one roots if | f (a1)| < |d| < | f (a2)| or | f (a2)| < |d| <
| f (a1)|. This frequently involves finding a value z such that
| f (z)| > |d|. To this end, we introduce functions |g(z)| such
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that |g(z)| < | f (z)| within the interval in question, and we
solve |g(z)| = |d|. For this value of z, | f (z)| > |d|.

We now have for m > 0
1. For the interval (−u, 0), we set |g(z)| = |z|n+m, which

is less than | f (z)| for z < 0. Solving |g(z)| = |d| yields
|z| = n+m

√
|d| = u. This implies that | f (−u)| > |d|. Since

f (0) = 0, there is a root in (−u, 0) if (−1)nd > 0.
2. For the interval (0, zs], f (0) = 0 and f (zs) > 0. Hence,

there is a root if 0 < d ≤ f (zs)
3. For the interval [zs, 1), f (zs) > 0 and f (1) = 0. Hence,

there is a root if 0 < d ≤ f (zs)
4. For the interval (1, u + 1), we set |g(z)| = |z − 1|n+m,

which is greater than | f (z)| for z > 1. Solving |g(z)| = |d|
yields z = u + 1. Since f (1) = 0, we obtain the result.

If m < 0, we have
1. For the interval (a, 0), we use

| f (z)| =
∣∣∣∣∣ z
z − 1

∣∣∣∣∣−m
|z|n+m.

For z < −1, |z/(z − 1)| > 1/2. We can thus set |g(z)| =

(1/2)−m|z|n+m = |d|, yielding |z| = 2−m/(n+m)u. If this is
smaller than 1, the interval in question is (−1, 0), otherwise
it is (−2−m/(n+m)u, 0)

2. For the interval (0, 1), | f (0)| = 0, and | f (z)| → ∞ as
z→ 1, and there is therefore one root in (0, 1) if d > 0.

3. For the interval (1, zs], | f (z)| → ∞ as z→ 1 from above,
and the lowest value of | f (z)| is | f (zs)|. Hence, there is a root
of | f (z)| = |d| if |d| ≥ | f (zs)|.

4. For the interval [zs, u), we set |g(z)| = |z|n+m, yielding
the bound u. Note that u > zs: if zd > 0 is a solution of
| f (zd)| = |d|, |g(zd)| < | f (zd)|, and we have to increase z to
satisfy |g(z)| = |d|.
This completes the proof of Theorem 1.

The Complex Roots

Formulas Determining the Complex Roots

First, we prove

Theorem 2. Equation (1) has no complex double roots.

To prove this theorem, note that if z∗ is a double root, z∗

satisfies both f (z) = d and f ′(z) = 0. Now

f ′(z) = nzn−1(1 − z)m − mzn(1 − z)m−1 = f (z)
(n

z
−

m
1 − z

)
.

Unless f (z) = 0, the only solution of f ′(z) = 0 is zs. Since
d , 0, no root of f (z) = d can satisfy f (z) = 0. It follows
that there is only a double root if f (zs) = d, and this is the
only double root. However, zs is real. For a different, but less
general proof, see Syski (1960).

To find the complex roots, we write

z = a + ib = rA(cos A + i sin A),
1 − z = 1 − a − ib = rB(cos B − i sin B). (4)

We only need the roots with b > 0, because the roots are
conjugate complex. If we use the canonical range (−π, π),
then we can assume 0 < A, B < π because for A negative,
b < 0. Also, because of (4), sin A and sin B must have the
same sign, which implies B > 0. We now have

Theorem 3. For any complex root of (1) with b > 0, there is
an integer k, −max(0,m) < k < n such that

sinn B sinm A
sinn+m(A + B)

(−1)k = d. (5)

with

B =
nA − kπ

m
, A + B =

(n + m)A − kπ
m

(6)

Moreover, if d is positive, there is only a root of (5) if k is
even, and if d is negative, there is only a root of (5) if k is
odd. Finally

0 < A + B < π. (7)

To prove the theorem, we use

zn(1 − z)m = rn
Arm

B (cos(nA − mB) + i sin(nA − mB)). (8)

Since this must be equal to d, which is real, the imaginary
term must vanish, that is

nA − mB = kπ, k integer. (9)

Solving this equation for B proves (6). Also, cos(nA−mB) =

cos(kπ) = (−1)k. Hence, to prove (5), we only need to show

rA =
sin B

sin(A + B)
, rB =

sin A
sin(A + B)

. (10)

We have (see (4)):

tan A =
b
a
, tan B =

b
1 − a

.

We solve these two equations for a and b to obtain

1 − a = a
tan A
tan B

, a =
tan B

tan A + tan B
, b = a tan A. (11)

This leads to the following expressions

a =
cos A sin B
sin(A + B)

, b =
sin A sin B
sin(A + B)

, 1 − a =
sin A cos B
sin(A + B)

.

(12)
Since b > 0, sin(A + B) > 0, and with 0 < A, B < π, this
implies (7). r2

A can now be found as follows

r2
A = a2 + b2 = a2 + a2 tan2 A =

a2

cos2 A
,

which immediately leads to rA as given in (10). To find
rB, note that b = a tan A and 1 − a = a tan A

tan B implies b =
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(1 − a) tan B. Once this is established, the proof is similar to
the one for rA.

Since (5) can be written as rn
Arm

B = (−1)kd, we conclude
that (−1)kd > 0, that is, k must be even if d > 0 and odd if
d < 0.

Next, we show

−m < k < n if m > 0 (13)
0 < k < n if m < 0. (14)

The inequality (13) follows immediately from

−mπ < −mB < nA − mB = kπ < nπ.

If m < 0, we have, since A + B < π:

0 < nA−mB = kπ = (n+m)A−m(A+B) < (n+m)A−mπ < nπ.

Hence, 0 < k < n as claimed. This completes the proof of
Theorem 3.

It is convenient to define

φk(A) =
sinnB sinm A

sinn+m(A + B)
, B =

nA − kπ
m

.

Hence, we have to solve φk(A) = |d|, where k must be even
if d > 0, and odd if d < 0, and −max(m, 0) < k < n. In
the next two sections, we show that the equation φk(A) = |d|
has a unique root Ak, and we provide intervals for each Ak.
Given Ak, we can find the corresponding values for a, b and
z by (11). We denote these values by ak, bk and zk. For our
discussion, it is convenient to treat the case m > 0 and m < 0
separately.

Intervals for Ak if m is Positive

To facilitate the solution φk(A) = |d| for positive m, we
find for each k an interval that A must satisfy in order to be a
root. We have

Theorem 4. If m > 0, then
1. If −m < k < 0, φk(A) = |d| has exactly one root in the

interval from 0 to m+k
n+mπ.

2. If k = 0, φk(A) = |d| has exactly one root in the interval
from 0 to m+k

n+mπ, provided |d| > f (zs).
3. For 0 < k < n, φk(A) = |d| has exactly one root in the

interval from k
nπ to m+k

n+mπ.

For our discussions, we define `k = max(0, k
n ). and

uk = n+k
n+m . Within the interval (`k, uk), φk(A) is continuous,

and unless k = 0, φk(A) ranges from 0 to ∞, which implies
that there is at least one A where φk(A) = |d|. There would be
exactly one root if φk(A) increases with A. φk(A) approaches
0 as A approaches `k because either A or B approaches 0. As
A approaches uk, A + B approach π.

If k = 0, φk(A) does not approach zero as A → 0. The
reason is that A, B and A + B all converge to zero together.

In this case, sin A → A, sin B→ B and sin(A + B) → A + B.
Consequently

φ0(A) ≈
BnAm

(A + B)n+m .

For k=0, (6) implies B = nA/m and A + B = (n + m)A/m.
Using these values, the equation above becomes

lim
A→0

φ0(A) =
nnmm

(n + m)n+m = f (zs).

Suppose now that φk(A) increases with k. In this case, φk(A)
ranges from f (zs) to ∞, and there would be no root for
|d| < f (zs), and one root otherwise.

Instead of proving that φk(A) increases with A, we prove
that if φk(A) = |d| has more than one root in the interval
(`k, uk), we get more than n+m roots for (1), which is impos-
sible. For k = 0, the argument is slightly more complicated,
but the fact is that we get two real roots in (0, 1) if |d| ≤ f (zs)
and a complex root z0 and its conjugate if |d| > f (zs). Indeed,
when k = 0, we combine, for the root count, the two real
roots in (0, 1) arising when |d| ≤ f (zs) with the complex root
and its conjugate arising when |d| > f (zs). We also use the
fact that the number of times k satisfying 0 < k < n is even is
n−2

2 if n is even, and n−1
2 if n is odd. A similar result applies

for the negative k: there are m−2
2 even values of k when m is

even, and m−1
2 values if m is odd. The case of k odd can be

dealt with in a similar fashion. The following table shows
that the number of roots for the case d > 0 (k even) is indeed
n + m. In this and later tables, we abbreviate even by “e” and
odd by “o”.

Number of roots of (1) if d > 0 and m > 0)

n m k > 0 k < 0 k = 0 or Total
z ∈ (0, 1) z < (0, 1)

e e n − 2 m − 2 2 2 n + m
e o n − 2 m − 1 2 1 n + m
o e n − 1 m − 2 2 1 n + m
o o n − 1 m − 1 2 0 n + m

A similar table can be found for d < 0, in which case k
must be odd.

Number of roots of (1) if d < 0 and m > 0

n m k > 0 k < 0 z < (0, 1) Total
e e n m 0 n + m
e o n m − 1 1 n + m
o e n − 1 m 1 n + m
o o n − 1 m − 1 2 n + m

We solved many problems with our method. Among other
problems, we found Ak and |zk |, which is of course rA for
A = Ak, for n ranging from 3 to 50 and m from 1 to n. We
chose d to be c f (zs), where c ranged from 1/3 to 4/3, and
from -4/3 to -1/3. Hence, we looked at roughly 20,000 cases.
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In all these 20,000 cases, |zk | decreased with k. We tried hard
to prove that this is always the case, but without success. We
could not find any counterexamples either. Our conclusion
is that for most practical applications, one can safely assume
that |zk | decreases with k.

We also note that Ak typically increases with k, but there
are exceptions. Obviously, if |d| is high, then Ak approaches
its upper bound uk, and since the upper bounds increase with
k, the same is true for Ak when |d| is high. A similar result
applies when k > 0 and |d| is low. On the other hand, A0
is sometimes less than Ak, k < 0. As the reader may prove,
this follows from the fact that as A approaches 0 from above,
φ0(A) approaches f (zs).

Intervals for Ak if m is Negative

Let us now consider the case m < 0. We have

Theorem 5. If m < 0, then:
1. If 0 < k < −m, φk(A) = |d| has exactly one root in the

interval from 0 to k
nπ.

2. If k = −m, φk(A) = |d| has exactly one root in the inter-
val from 0 to k

nπ, provided |d| < f (zs).
3. For −m < k < n, φk(A) = |d| has exactly one root in the

interval from m+k
n+mπ to k

nπ.

The proof is very similar to the proof of Theorem 4, except
that φk(A)→ ∞ as A converges to its lower limit from above,
and for k , −m, φk(A) converges to 0 as A converges to its
upper limit. Also, for k = −m, as A converges to 0, so does
B and A + B, with the result that φ0(A) converges to f (zs).

As before, we have to count the roots to make sure we
have n roots. This is done in the tables below.
Number of roots of (1) if d > 0 and m < 0

n m k , −m k = −m Total
or z > 1 0 < z < 1 z < 0

e e n − 2 − 2 2 1 1 n
e o n − 2 0 1 1 n
o e n − 1 − 2 2 1 0 n
o o n − 1 0 1 0 n

Number of roots of (1) if d < 0 and m < 0

n m k , −m k = −m Total
or z > 1 0 < z < 1 z < 0

e e n 0 0 0 n
e o n − 2 2 0 0 n
o e n − 1 0 0 1 n
o o n − 1 − 2 2 0 1 n

We also conducted numerical experiments for the case
m < 0. In these experiments, n ranged from 3 to 50, and
m from −n + 1 to −1, and we used the same values for d as
in the case where m > 0. In all these cases, |zk | increased

with k. Hence, the results come out in ascending order if the
program finds the roots in ascending order of k.

We also note that like in the case m > 0, the Ak tend to in-
crease with k, but there are exceptions. If |d| is small, Ak will
be close to its bound `k, and `k increases with k. A similar
result applies when |d| is low, provided k > |m|.

Numerical Considerations and Conclusions

In this paper, we showed that all roots of the equation
zn(1 − z)m = d can be found by solving equations in only
one real variable which is an angle in the case of complex
roots. Also, in all cases, the roots can be restricted to small
intervals, which makes it easy to apply Newton’s method, a
method which requires derivatives. For real roots, we use the
derivative of the logarithm of (1) to obtain

f ′(z)
f (z)

=
n
z
−

m
1 − z

,

and this can easily be solved for f ′(z). If we restrict our
search to the appropriate interval, then f (z) = d if and only
if | f (z)| = |d|, and we can use

xn+1 = xn −
f (z) − |d|

f (z)
(

n
z −

m
z

) .
For solving (5), we find after some calculation

φ′k(A)
φk(A)

=
1
m

(m2 cot A + n2 cot B − (n + m)2 cot(A + B)).

The width of the interval in which the root lies increases with
k. We typically needed less than 10 interactions for each root.

Often only certain roots are needed. For instance, in Syski
(1960), only the roots for k < 0 were needed. Our method
allows to find only these roots, and none other. In other cases,
only the complex root with the largest or smallest modulus is
needed.

In view of the simplicity of our method, the question arises
to which extent it can be generalized. For instance, what hap-
pens if d is complex? Of course, if d = rd(cosα+ i sinα), we
can use our method if there is an integer ν such that να = π.
In this case, we merely have take the νth power on both sides
of (1) and apply our method to this new equation. Another
interesting question is the following: which polynomials can
be converted to the form given by (1)? A more general ques-
tion is as follows: in our case, each complex root was asso-
ciated with an integer k, and given a value for k, the problem
then becomes to solve an equation depending only on the
angle A. Since the Bring form can be reduced to (1), any
equation reducible to the Bring form with real coefficients
can be parametrized by the integer k. It is an open question
what other equations can be parametrized in this fashion.
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