Some infinite product identities involving balancing and Lucas-balancing numbers

Sai Gopal Rayaguru
Department of Mathematics
National Institute of Technology Rourkela, India

Gopal Krishna Panda
Department of Mathematics
National Institute of Technology Rourkela, India

Abstract

In this article we establish some product identities for balancing and Lucas-balancing numbers, using the telescoping summation formula and inverse hyperbolic tangent function.

Introduction

The balancing sequence, $\left(B_{n}\right)_{n \geq 1}$ and the Lucas-balancing numbers, $\left(C_{n}\right)_{n \geq 1}$ satisfy the recurrence relation $B_{n+1}=$ $6 B_{n}-B_{n-1}$ and $C_{n+1}=6 C_{n}-C_{n-1}$ with the initial values $B_{0}=0, B_{1}=1, C_{0}=1, C_{1}=3$ [see Behera and Panda (1999)]. Both of the sequences have the characteristic equation $x^{2}-6 x+1=0$. Hence, for the value $\alpha=3+\sqrt{8}$ the $n^{\text {th }}$ term of these sequences can be written as

$$
\begin{equation*}
B_{n}=\frac{\alpha^{n}-\alpha^{-n}}{2 \sqrt{8}} \text { and } C_{n}=\frac{\alpha^{n}+\alpha^{-n}}{2} . \tag{1}
\end{equation*}
$$

Melham and Shannon in Melham and Shannon (1995) investigated many inverse trigonometric and hyperbolic summation formulas involving generalized Fibonacci numbers. For instance,

$$
\prod_{k=1}^{\infty} \frac{F_{2 k+2}+1}{F_{2 k+2}-1}=3 \text { and } \sum_{n=1}^{\infty} \tanh ^{-1}\left(\frac{1}{F_{2 n+2}}\right)=\frac{\ln 3}{2} .
$$

Frontczak in Frontczak (2016) investigated several inverse hyperbolic summation and product identities for Fibonacci and Lucas numbers. The present paper deals with finding product identities for balancing and Lucas-balancing numbers.

Preliminaries

The following is the generalized telescoping summation formula [Basu and Apostol (2000), Equation (2.1)]

$$
\begin{equation*}
\sum_{k=1}^{N}[f(k)-f(k+m)]=\sum_{k=1}^{m} f(k)-\sum_{k=1}^{m} f(k+N), \quad \text { for } N \geq m \geq 1 \tag{2}
\end{equation*}
$$

Corresponding Author Email: saigopalrs@gmail.com
and similarly the alternating telescoping summation formula is

$$
\begin{align*}
& \sum_{k=1}^{N}(-1)^{k-1}\left[f(k)+(-1)^{m-1} f(k+m)\right] \tag{3}\\
& \quad=\sum_{k=1}^{m}(-1)^{k-1} f(k)+(-1)^{N-1} \sum_{k=1}^{m}(-1)^{k-1} f(k+N) .
\end{align*}
$$

If $f(N) \rightarrow 0$ as $N \rightarrow \infty$, then from (2) and (3), we obtain

$$
\begin{equation*}
\sum_{k=1}^{\infty}[f(k)-f(k+m)]=\sum_{k=1}^{m} f(k) \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{k=1}^{\infty}(-1)^{k-1}\left[f(k)+(-1)^{m-1} f(k+m)\right]=\sum_{k=1}^{m}(-1)^{k-1} f(k) . \tag{5}
\end{equation*}
$$

The following product identity is useful:

$$
\begin{equation*}
\prod_{k=1}^{m} f(k)=\prod_{k=1}^{\lceil m / 2\rceil} f(2 k-1) \prod_{k=1}^{\lfloor m / 2\rfloor} f(2 k) \tag{6}
\end{equation*}
$$

where $\lfloor x\rfloor$ and $\lceil x\rceil$ denote the floor and ceiling function of x respectively. Moreover,

$$
\prod_{k=1}^{2 q} f(k)=\prod_{k=1}^{q} f(2 k-1) f(2 k)
$$

and

$$
\prod_{k=1}^{2 q-1} f(k)=\prod_{k=1}^{q} f(2 k-1) \prod_{k=1}^{q-1} f(2 k)
$$

with the trivial product identity

$$
\prod_{k=1}^{0} f(k)=1 .
$$

Using (1) it is easy to get the following identities involving balancing and Lucas-balancing numbers [see Panda (2009)].

$$
\begin{equation*}
\frac{\alpha^{n}+1}{\alpha^{n}-1}=\frac{\sqrt{8} B_{n}}{C_{n}-1}=\frac{C_{n}+1}{\sqrt{8} B_{n}} \tag{7}
\end{equation*}
$$

$$
\begin{gather*}
B_{2 n}=2 B_{n} C_{n} \tag{8}\\
C_{2 n}+1=2 C_{n}^{2} \tag{9}\\
C_{2 n}-1=16 B_{n}^{2} \tag{10}
\end{gather*}
$$

The following inverse hyperbolic function identities are very important for proving our main results.

$$
\begin{align*}
\tanh ^{-1} x+\tanh ^{-1} y & =\tanh ^{-1}\left(\frac{x+y}{1+x y}\right), x y<1 \tag{11}\\
\tanh ^{-1} x-\tanh ^{-1} y & =\tanh ^{-1}\left(\frac{x-y}{1-x y}\right), x y>-1 \tag{12}\\
\tanh ^{-1}\left(\frac{x}{y}\right) & =\frac{1}{2} \ln \left(\frac{y+x}{y-x}\right),|x|<|y| \tag{13}
\end{align*}
$$

The following two lemmas are required for proving some of our main results.

Lemma 1. For every natural number m and n, the following identities hold.
(a) $B_{n} B_{n+m+1}-B_{n+1} B_{n+m}=-B_{m}$
(b) $C_{n} C_{n+m+1}-C_{n+1} C_{n+m}=8 B_{m}$

Proof. We prove (a) only. Using (1) and the fact $\alpha \beta=1$, we have

$$
\begin{aligned}
& B_{n} B_{n+m+1}-B_{n+1} B_{n+m} \\
& =\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta} \cdot \frac{\alpha^{n+m+1}-\beta^{n+m+1}}{\alpha-\beta}-\frac{\alpha^{n+1}-\beta^{n+1}}{\alpha-\beta} \cdot \frac{\alpha^{n+m}-\beta^{n+m}}{\alpha-\beta} \\
& =\frac{1}{(\alpha-\beta)^{2}}\left[\alpha^{m}\left(\alpha-\frac{1}{\alpha}\right)-\beta^{m}\left(\beta-\frac{1}{\beta}\right)\right] \\
& =-\frac{\alpha^{m}-\beta^{m}}{\alpha-\beta}=-B_{m}
\end{aligned}
$$

The proof of (b) is similar.
Lemma 2. For every natural number m and n, the following identities hold.
(a) $B_{n+m} B_{n+m+1}=6 \sum_{i=1}^{m}(-1)^{i+m} B_{n+i}^{2}+(-1)^{m} B_{n} B_{n+1}$
(b) $C_{n+m} C_{n+m+1}=6 \sum_{i=1}^{m}(-1)^{i+m} C_{n+i}^{2}+(-1)^{m} C_{n} C_{n+1}$

Proof. We prove (a) only. The proof of (b) is similar. Our proof is based on mathematical induction on m. Since

$$
B_{n+1} B_{n+2}=B_{n+1}\left(6 B_{n+1}-B_{n}\right)=6 B_{n+1}^{2}-B_{n} B_{n+1},
$$

the identity holds for $m=1$. Assume that the identity holds for every natural number $m \leq k$. That is,

$$
B_{n+k} B_{n+k+1}=6 \sum_{i=1}^{k}(-1)^{i+k} B_{n+i}^{2}+(-1)^{k} B_{n} B_{n+1}
$$

It is sufficient to show that the identity holds for $m=k+1$.

$$
\begin{aligned}
B_{n+k+1} B_{n+k+2} & =6 B_{n+k+1}^{2}-B_{n+k} B_{n+k+1} \\
& =6 B_{n+k+1}^{2}-\left[6 \sum_{i=1}^{k}(-1)^{i+k} B_{n+i}^{2}+(-1)^{k} B_{n} B_{n+1}\right] \\
& =6\left[B_{n+k+1}^{2}-\sum_{i=1}^{k}(-1)^{i+k} B_{n+i}^{2}\right]+(-1)^{k+1} B_{n} B_{n+1} \\
& =6 \sum_{i=1}^{k+1}(-1)^{i+k+1} B_{n+i}^{2}+(-1)^{k+1} B_{n} B_{n+1} .
\end{aligned}
$$

The following is the main reslut of FrontczakFrontczak (2016):

Lemma 3. Let $g(x)$ and $h(x)$ be real functions of one variable and let $h(x)$ be composite with $h(x)=h(g(x))<1$.
a) Define $H(x)$ by

$$
H(x)=\frac{h(g(x))-h(g(x+1))}{1-h(g(x)) h(g(x+1))}
$$

Then we have

$$
\sum_{n=1}^{k} \tanh ^{-1} H(n)=\tanh ^{-1} h(g(1))-\tanh ^{-1} h(g(k+1))
$$

and

$$
\sum_{n=1}^{\infty} \tanh ^{-1} H(n)=\tanh ^{-1} h(g(1))-\lim _{k+1 \rightarrow \infty} \tanh ^{-1} h(g(k+1))
$$

b) Define $H^{*}(x)$ by

$$
H^{*}(x)=\frac{h(g(x))+h(g(x+1))}{1+h(g(x)) h(g(x+1))}
$$

Then we have

$$
\begin{aligned}
\sum_{n=1}^{k}(-1)^{n+1} \tanh ^{-1} H^{*}(n)= & \tanh ^{-1} h(g(1)) \\
& +(-1)^{k+1} \tanh ^{-1} h(g(k+1))
\end{aligned}
$$

and

$$
\begin{aligned}
\sum_{n=1}^{\infty}(-1)^{n+1} \tanh ^{-1} H^{*}(n)= & \tanh ^{-1} h(g(1)) \\
& +\lim _{k+1 \rightarrow \infty}(-1)^{k+1} \tanh ^{-1} h(g(k+1))
\end{aligned}
$$

Infinite product identities

Theorem 1. For $q, n \in \mathbb{Z}^{+}$the following infinite product identities hold.

$$
\begin{align*}
& \prod_{k=1}^{\infty} \frac{B_{(2 n-1)(2 k+2 q-1)}+B_{(2 n-1)(2 q-1)}}{B_{(2 n-1)(2 k+2 q-1)}-B_{(2 n-1)(2 q-1)}} \tag{14}\\
&= \frac{1}{(\sqrt{8})^{2 q-1}} \prod_{k=1}^{q} \frac{C_{(2 n-1)(2 k-1)}}{B_{(2 n-1)(2 k-1)}} \prod_{k=1}^{q-1} \frac{C_{(2 n-1) 2 k}}{B_{(2 n-1) 2 k}} \\
& \prod_{k=1}^{\infty} \frac{B_{2 n(2 k+2 q-1)}+B_{2 n(2 q-1)}}{B_{2 n(2 k+2 q-1)}-B_{2 n(2 q-1)}}=\frac{1}{(\sqrt{8})^{2 q-1}} \prod_{k=1}^{2 q-1} \frac{C_{2 n k}}{B_{2 n k}} \tag{15}\\
& \prod_{k=1}^{\infty} \frac{B_{4 n(k+q)}+B_{4 n q}}{B_{4 n(k+q)}-B_{4 n q}}=\frac{1}{8^{q}} \prod_{k=1}^{2 q} \frac{C_{2 n k}}{B_{2 n k}} \tag{16}
\end{align*}
$$

and

$$
\begin{equation*}
\prod_{k=1}^{\infty} \frac{B_{(2 n-1)(2 k+2 q)}+B_{(2 n-1) 2 q}}{B_{(2 n-1)(2 k+2 q)}-B_{(2 n-1) 2 q}}=\frac{1}{8^{q}} \prod_{k=1}^{q} \frac{C_{(2 n-1)(2 k-1)} C_{(2 n-1) 2 k}}{B_{(2 n-1)(2 k-1)} B_{(2 n-1) 2 k}} \tag{17}
\end{equation*}
$$

Proof. Taking $f(k)=\tanh ^{-1}\left(\alpha^{-2 p k}\right)$ in (4) and using (12) and(1), we obtain

$$
\sum_{k=1}^{\infty} \tanh ^{-1}\left[\frac{B_{p m}}{B_{p(2 k+m)}}\right]=\sum_{k=1}^{m} \tanh ^{-1}\left[\frac{1}{\alpha^{2 p k}}\right]
$$

Converting the infinite sum identity to infinite product identity and employing the identities (7)-(10), we have

$$
\begin{equation*}
\prod_{k=1}^{\infty} \frac{B_{p(2 k+m)}+B_{p m}}{B_{p(2 k+m)}-B_{p m}}=\prod_{k=1}^{m} \frac{C_{2 p k}+1}{\sqrt{8} B_{2 p k}}=\frac{1}{(\sqrt{8})^{m}} \prod_{k=1}^{m} \frac{C_{p k}}{B_{p k}} \tag{18}
\end{equation*}
$$

Now, setting $p=2 n-1$ and $m=2 q-1$ in (18) and using (6), we have

$$
\begin{aligned}
& \prod_{k=1}^{\infty} \frac{B_{(2 n-1)(2 k+2 q-1)}+B_{(2 n-1)(2 q-1)}}{B_{(2 n-1)(2 k+2 q-1)}-B_{(2 n-1)(2 q-1)}} \\
& =\frac{1}{(\sqrt{8})^{2 q-1}} \prod_{k=1}^{2 q-1} \frac{C_{(2 n-1) k}}{B_{(2 n-1) k}} \\
& =\frac{1}{(\sqrt{8})^{2 q-1}} \prod_{k=1}^{q} \frac{C_{(2 n-1)(2 k-1)}}{B_{(2 n-1)(2 k-1)}} \prod_{k=1}^{q-1} \frac{C_{(2 n-1) 2 k}}{B_{(2 n-1) 2 k}}
\end{aligned}
$$

which proves (14).
Setting $p=2 n$ and $m=2 q-1$ in (18), it is easy to get (15). Similarly, Setting $p=2 n$ and $m=2 q$ in (18) proves (16). Further, $p=2 n-1$ and $m=2 q$ in (18) proves (17).

Theorem 2. For $q, n \in \mathbb{Z}^{+}$the following infinite product identities hold.

$$
\begin{align*}
& \quad \prod_{k=1}^{\infty} \frac{B_{4 n(2 k+q-1)}+B_{4 n q}}{B_{4 n(2 k+q-1)}-B_{4 n q}}=\frac{1}{(\sqrt{8})^{q}} \prod_{k=1}^{q} \frac{C_{2 n(2 k-1)}}{B_{2 n(2 k-1)}} \tag{19}\\
& \prod_{k=1}^{\infty} \frac{B_{(4 n-2)(2 k+q-1)}+B_{(2 n-1) 2 q}}{B_{(4 n-2)(2 k+q-1)}-B_{(2 n-1) 2 q}}=\frac{1}{(\sqrt{8})^{q}} \prod_{k=1}^{q} \frac{C_{(2 n-1)(2 k-1)}}{B_{(2 n-1)(2 k-1)}} \\
& \prod_{k=1}^{\infty} \frac{B_{(2 n-1)(2 k+2 q-1)}+B_{(2 n-1) 2 q}}{B_{(2 n-1)(2 k+2 q-1)}-B_{(2 n-1) 2 q}}=\frac{1}{8^{q}} \prod_{k=1}^{2 q} \frac{C_{(2 n-1)(2 k-1)}+1}{B_{(2 n-1)(2 k-1)}} \tag{20}
\end{align*}
$$

and

$$
\begin{align*}
& \prod_{k=1}^{\infty} \frac{B_{2(2 n-1)(k+q-1)}+B_{(2 n-1)(2 q-1)}}{B_{2(2 n-1)(k+q-1)}-B_{(2 n-1)(2 q-1)}} \\
& \quad=\frac{1}{(\sqrt{8})^{2 q-1}} \prod_{k=1}^{2 q-1} \frac{C_{(2 n-1)(2 k-1)}+1}{B_{(2 n-1)(2 k-1)}} \tag{22}
\end{align*}
$$

Proof. Taking $f(k)=\tanh ^{-1}\left(\alpha^{-p(2 k-1)}\right)$ in (4) and using (12) and (1), we obtain

$$
\sum_{k=1}^{\infty} \tanh ^{-1}\left[\frac{B_{p m}}{B_{p(2 k+m-1)}}\right]=\sum_{k=1}^{m} \tanh ^{-1}\left[\frac{1}{\alpha^{p(2 k-1)}}\right]
$$

Converting the infinite sum identity to infinite product identity, we have

$$
\begin{equation*}
\prod_{k=1}^{\infty} \frac{B_{p(2 k+m-1)}+B_{p m}}{B_{p(2 k+m-1)}-B_{p m}}=\prod_{k=1}^{m} \frac{\alpha^{p(2 k-1)}+1}{\alpha^{p(2 k-1)}-1} \tag{23}
\end{equation*}
$$

Using (6)-(10) in 23) for appropriate choice of p and m, the proof of (19)-(22) follows.

Theorem 3. For $q, n \in \mathbb{Z}^{+}$the following infinite product identities hold.

$$
\begin{equation*}
\prod_{k=1}^{\infty} \frac{B_{4 n(k+q)}+(-1)^{k-1} B_{4 n q}}{B_{4 n(k+q)}+(-1)^{k} B_{4 n q}}=\prod_{k=1}^{q} \frac{C_{2 n(2 k-1)} B_{4 n k}}{B_{2 n(2 k-1)} C_{4 n k}} \tag{24}
\end{equation*}
$$

$$
\begin{align*}
& \prod_{k=1}^{\infty} \frac{B_{(2 n-1)(2 k+2 q)}+(-1)^{k-1} B_{(2 n-1) 2 q}}{B_{(2 n-1)(2 k+2 q-1)}+(-1)^{k} B_{(2 n-1) 2 q}} \tag{25}\\
& \quad=\prod_{k=1}^{q} \frac{C_{(2 n-1)(2 k-1)} B_{(2 n-1) 2 k}}{B_{(2 n-1)(2 k-1)} C_{(2 n-1) 2 k}}
\end{align*}
$$

$$
\begin{align*}
& \prod_{k=1}^{\infty} \frac{C_{2 n(2 k+2 q-1)}+(-1)^{k-1} C_{2 n(2 q-1)}}{C_{2 n(2 k+2 q-1)}+(-1)^{k} C_{2 n(2 q-1)}} \\
& \quad=\frac{1}{\sqrt{8}} \prod_{k=1}^{q} \frac{C_{2 n(2 k-1)}}{B_{2 n(2 k-1)}} \prod_{k=1}^{q-1} \frac{B_{4 n k}}{C_{4 n k}} \tag{26}
\end{align*}
$$

and

$$
\begin{align*}
& \prod_{k=1}^{\infty} \frac{C_{(2 n-1)(2 k+2 q-1)}+(-1)^{k-1} C_{(2 n-1)(2 q-1)}}{C_{(2 n-1)(2 k+2 q-1)}+(-1)^{k} C_{(2 n-1)(2 q-1)}} \tag{27}\\
& \quad=\frac{1}{\sqrt{8}} \prod_{k=1}^{q} \frac{C_{(2 n-1)(2 k-1)}}{B_{(2 n-1)(2 k-1)}} \prod_{k=1}^{q-1} \frac{B_{(2 n-1) 2 k}}{C_{(2 n-1) 2 k}}
\end{align*}
$$

Proof. Taking $f(k)=\tanh ^{-1}\left(\alpha^{-2 p k}\right)$ in (5), setting $m=2 q$ and using (12) and (1) we obtain

$$
\sum_{k=1}^{\infty}(-1)^{k-1} \tanh ^{-1}\left[\frac{B_{2 p q}}{B_{p(2 k+2 q)}}\right]=\sum_{k=1}^{2 q}(-1)^{k-1} \tanh ^{-1}\left[\frac{1}{\alpha^{2 p k}}\right]
$$

and hence

$$
\begin{aligned}
\prod_{k=1}^{\infty} \frac{B_{p(2 k+2 q)}+(-1)^{k-1} B_{2 p q}}{B_{p(2 k+2 q)}+(-1)^{k} B_{2 p q}} & =\prod_{k=1}^{2 q} \frac{\alpha^{2 p k}+(-1)^{k-1}}{\alpha^{2 p k}+(-1)^{k}} \\
& =\prod_{k=1}^{q} \frac{\alpha^{2 p(2 k-1)}+1}{\alpha^{2 p(2 k-1)}-1} \prod_{k=1}^{q} \frac{\alpha^{4 p k}-1}{\alpha^{4 p k}+1} \\
& =\prod_{k=1}^{q} \frac{\sqrt{8} B_{2 p(2 k-1)}}{C_{2 p(2 k-1)}-1} \frac{\sqrt{8} B_{4 p k}}{C_{4 p k}+1} \\
& =\prod_{k=1}^{q} \frac{C_{p(2 k-1)}}{B_{p(2 k-1)}} \frac{B_{2 p k}}{C_{2 p k}}
\end{aligned}
$$

Setting $p=2 n$ and $p=2 n-1$ above, proof of (24) and (25) follows respectively.

Taking $f(k)=\tanh ^{-1}\left(\alpha^{-2 p k}\right)$ in (5), setting $m=2 q-1$ and using (11) and (1) we obtain

$$
\sum_{k=1}^{\infty}(-1)^{k-1} \tanh ^{-1}\left[\frac{C_{p(2 q-1)}}{C_{p(2 k+2 q-1)}}\right]=\sum_{k=1}^{2 q-1}(-1)^{k-1} \tanh ^{-1}\left[\frac{1}{\alpha^{2 p k}}\right]
$$

and hence

$$
\begin{aligned}
& \prod_{k=1}^{\infty} \frac{C_{p(2 k+2 q-1)}+(-1)^{k-1} C_{p(2 q-1)}}{C_{p(2 k+2 q-1)}+(-1)^{k} C_{p(2 q-1)}} \\
& =\prod_{k=1}^{2 q-1} \frac{\alpha^{2 p k}+(-1)^{k-1}}{\alpha^{2 p k}+(-1)^{k}} \\
& =\prod_{k=1}^{q} \frac{\alpha^{2 p(2 k-1)}+1}{\alpha^{2 p(2 k-1)}-1} \prod_{k=1}^{q-1} \frac{\alpha^{4 p k}-1}{\alpha^{4 p k}+1} \\
& =\prod_{k=1}^{q} \frac{\sqrt{8} B_{2 p(2 k-1)}}{C_{2 p(2 k-1)}-1} \prod_{k=1}^{q-1} \frac{\sqrt{8} B_{4 p k}}{C_{4 p k}+1} \\
& =\frac{1}{\sqrt{8}} \prod_{k=1}^{q} \frac{C_{p(2 k-1)}}{B_{p(2 k-1)}} \prod_{k=1}^{q-1} \frac{B_{2 p k}}{C_{2 p k}}
\end{aligned}
$$

Setting $p=2 n$ and $p=2 n-1$ above, proof of (26) and (27) follows respectively.

Theorem 4. For $q, n \in \mathbb{Z}^{+}$the following infinite product identities hold.

$$
\begin{equation*}
\prod_{k=1}^{\infty} \frac{B_{4 n(2 k+2 q-1)}+(-1)^{k-1} B_{8 n q}}{B_{4 n(2 k+2 q-1)}+(-1)^{k} B_{8 n q}}=\prod_{k=1}^{q} \frac{C_{2 n(4 k-3)} B_{2 n(4 k-1)}}{B_{2 n(4 k-3)} C_{2 n(4 k-1)}} \tag{28}
\end{equation*}
$$

$$
\begin{align*}
& \prod_{k=1}^{\infty} \frac{B_{(4 n-2)(2 k+2 q-1)}+(-1)^{k-1} B_{(2 n-1) 4 q}}{B_{(4 n-2)(2 k+2 q-1)}+(-1)^{k} B_{(2 n-1) 4 q}} \tag{29}\\
& \quad=\prod_{k=1}^{q} \frac{C_{(2 n-1)(4 k-3)} B_{(2 n-1)(4 k-1)}}{B_{(2 n-1)(4 k-3)} C_{(2 n-1)(4 k-1)}}
\end{align*}
$$

$$
\begin{align*}
& \prod_{k=1}^{\infty} \frac{B_{(2 n-1)(2 k+2 q-1)}+(-1)^{k-1} B_{(2 n-1) 2 q}}{B_{(2 n-1)(2 k+2 q-1)}+(-1)^{k} B_{(2 n-1) 2 q}} \tag{30}\\
&=\prod_{k=1}^{q} \frac{\left(C_{(2 n-1)(4 k-3)}+1\right) B_{(2 n-1)(4 k-1)}}{\left(C_{(2 n-1)(4 k-1)}+1\right) B_{(2 n-1)(4 k-3)}} \\
& \prod_{k=1}^{\infty} \frac{C_{8 n(k+q-1)}+(-1)^{k-1} C_{4 n(2 q-1)}}{C_{8 n(k+q-1)}+(-1)^{k} C_{4 n(2 q-1)}} \tag{31}\\
& \quad=\frac{1}{\sqrt{8}} \prod_{k=1}^{q} \frac{C_{2 n(4 k-3)}}{B_{2 n(4 k-3)}} \prod_{k=1}^{q-1} \frac{B_{2 n(4 k-1)}}{C_{2 n(4 k-1)}}
\end{align*}
$$

$$
\begin{equation*}
\prod_{k=1}^{\infty} \frac{C_{(8 n-4)(k+q-1)}+(-1)^{k-1} C_{(4 n-2)(2 q-1)}}{C_{(8 n-4)(k+q-1)}+(-1)^{k} C_{(4 n-2)(2 q-1)}} \tag{32}
\end{equation*}
$$

$$
=\frac{1}{\sqrt{8}} \prod_{k=1}^{q} \frac{C_{(2 n-1)(4 k-3)}}{B_{(2 n-1)(4 k-3)}} \prod_{k=1}^{q-1} \frac{B_{(2 n-1)(4 k-1)}}{C_{(2 n-1)(4 k-1)}}
$$

and

$$
\begin{align*}
& \prod_{k=1}^{\infty} \frac{C_{(4 n-2)(k+q-1)}+(-1)^{k-1} C_{(2 n-1)(2 q-1)}}{C_{(4 n-2)(k+q-1)}+(-1)^{k} C_{(2 n-1)(2 q-1)}} \tag{33}\\
& \quad=\frac{1}{\sqrt{8}} \prod_{k=1}^{q} \frac{\left(C_{(2 n-1)(4 k-3)}+1\right)}{B_{(2 n-1)(4 k-3)}} \prod_{k=1}^{q-1} \frac{B_{(2 n-1)(4 k-1)}}{\left(C_{(2 n-1)(4 k-1)}+1\right)}
\end{align*}
$$

Proof. Taking $f(k)=\tanh ^{-1}\left(\alpha^{-p(2 k-1)}\right)$ in (5), setting $m=2 q$ and using (12) and (1), we obtain

$$
\begin{equation*}
\sum_{k=1}^{\infty}(-1)^{k-1} \tanh ^{-1}\left[\frac{B_{2 p q}}{B_{p(2 k+2 q-1)}}\right]=\sum_{k=1}^{2 q}(-1)^{k-1} \tanh ^{-1}\left[\frac{1}{\alpha^{p(2 k-1)}}\right] \tag{34}
\end{equation*}
$$

Proof of the identities (28)-(30) follows from (34).
Taking $f(k)=\tanh ^{-1}\left(\alpha^{-p(2 k-1)}\right)$ in (5), setting $m=2 q-1$ and using (11) and (1) we obtain

$$
\begin{equation*}
\sum_{k=1}^{\infty}(-1)^{k-1} \tanh ^{-1}\left[\frac{C_{p(2 q-1)}}{C_{2 p(k+q-1)}}\right]=\sum_{k=1}^{2 q-1}(-1)^{k-1} \tanh ^{-1}\left[\frac{1}{\alpha^{p(2 k-1)}}\right] \tag{35}
\end{equation*}
$$

Proof of (31)-(33) follows from (35).

Theorem 5. If p, j, t and m are natural numbers, then the following identities are true for balancing numbers.

$$
\prod_{n=1}^{\infty} \frac{t^{2} B_{p n+j}^{m} B_{p(n+1)+j}^{m}-1+t\left(B_{p(n+1)+j}^{m}-B_{p n+j}^{m}\right)}{t^{2} B_{p n+j}^{m} B_{p(n+1)+j}^{m}-1-t\left(B_{p(n+1)+j}^{m}-B_{p n+j}^{m}\right)}=\frac{t B_{p+j}^{m}+1}{t B_{p+j}^{m}-1},
$$

and

$$
\begin{aligned}
& \prod_{n=1}^{\infty} \frac{t^{2} B_{p n+j}^{m} B_{p(n+1)+j}^{m}+1+(-1)^{n+1} t\left(B_{p(n+1)+j}^{m}+B_{p n+j}^{m}\right)}{t_{p n(n+1)+j}^{m}+1-(-1)^{n+1} t\left(B_{p(n+1)+j}^{m}+B_{p n+j}^{m}\right)} \\
& \quad=\frac{t B_{p+j}^{m}+1}{t B_{p+j}^{m}-1}
\end{aligned}
$$

Replacing B_{n} by C_{n}, two such identities can be obtained for the Lucas-balancing numbers.

Proof. Taking $g(n)=B_{p n+j}$ and $h(x)=\frac{1}{t x^{m}}$ in Lemma 3, we have

$$
H(n)=\frac{t\left(B_{p(n+1)+j}^{m}-B_{p n+j}^{m}\right)}{t^{2} B_{p n+j}^{m} B_{p(n+1)+j}^{m}-1}
$$

and

$$
H^{*}(n)=\frac{t\left(B_{p(n+1)+j}^{m}+B_{p n+j}^{m}\right)}{t^{2} B_{p n+j}^{m} B_{p(n+1)+j}^{m}+1} .
$$

Hence,

$$
\begin{aligned}
& \qquad \sum_{n=1}^{k} \tanh ^{-1} H(n)=\frac{1}{2} \ln \left(\frac{t B_{p+j}^{m}+1}{t B_{p+j}^{m}-1} \cdot \frac{t B_{p(k+1)+j}^{m}+1}{t B_{p(k+1)+j}^{m}-1}\right), \\
& \sum_{n=1}^{k}(-1)^{n+1} \tanh ^{-1} H^{*}(n)=\frac{1}{2} \ln \left(\frac{t B_{p+j}^{m}+1}{t B_{p+j}^{m}-1} \cdot \frac{t B_{p(k+1)+j}^{m}+(-1)^{k+1}}{t B_{p(k+1)+j}^{m}-(-1)^{k+1}}\right), \\
& \text { and } \\
& \sum_{n=1}^{\infty} \tanh ^{-1} H(n)=\sum_{n=1}^{\infty}(-1)^{n+1} \tanh ^{-1} H^{*}(n)=\frac{1}{2} \ln \left(\frac{t B_{p+j}^{m}+1}{t B_{p+j}^{m}-1}\right) .
\end{aligned}
$$

Converting the infinite sum identity to infinite product identity, the result follows immediately.

Corollary 1. Putting $p=2, t=m=1$ in Theorem 5] we have

$$
\frac{B_{j+2}+1}{B_{j+2}-1}=\left\{\begin{array}{l}
\prod_{n=1}^{\infty} \frac{B_{2 n+j+1}^{2}-2+2 C_{2 n+j+1}}{B_{2 n+j+1}^{2}-2-2 C_{2 n+j+1}} \\
\prod_{n=1}^{\infty} \frac{B_{2 n+j+1}+6(-1)^{n+1}}{B_{2 n+j+1}-6(-1)^{n+1}} \\
\prod_{n=1}^{\infty} \frac{C_{2 n+j+1}^{2}-17+16 C_{2 n+j+1}}{C_{2 n+j+1}^{2}-17-16 C_{2 n+j+1}} \\
\prod_{n=1}^{\infty} \frac{C_{2 n+j+1}^{2}-1+48(-1)^{n+1} B_{2 n+j+1}}{C_{2 n+j+1}^{2}-1-48(-1)^{n+1} B_{2 n+j+1}}
\end{array}\right.
$$

and

$$
\frac{C_{j+2}+1}{C_{j+2}-1}=\left\{\begin{array}{l}
\prod_{n=1}^{\infty} \frac{C_{2 n+j+1}^{2}+7+16 B_{2 n+j+1}}{C_{2 n+j+1}^{2}+7-16 B_{2 n+j+1}} \\
\prod_{n=1}^{\infty} \frac{C_{2 n+j+1}^{2}+9+6(-1)^{n+1} C_{2 n+j+1}}{C_{2 n+j+1}^{2}+9-6(-1)^{n+1} C_{2 n+j+1}} \\
\prod_{n=1}^{\infty} \frac{B_{2 n+j+1}^{2}+1+2 B_{2 n+j+1}}{B_{2 n+j+1}^{2}+1-2 B_{2 n+j+1}} \\
\prod_{n=1}^{\infty} \frac{4 B_{2 n+j+1}^{2}+5+3(-1)^{n+1} C_{2 n+j+1}}{4 B_{2 n+j+1}^{2}+5-3(-1)^{n+1} C_{2 n+j+1}} .
\end{array}\right.
$$

Theorem 6. If $\alpha=3+\sqrt{8}$ and $m, j \in \mathbb{N}$, then

$$
\begin{align*}
& \prod_{n=1}^{\infty} \frac{6 m^{2} \sum_{i=1}^{j}(-1)^{i+j} B_{n+i}^{2}+\left((-1)^{j} m^{2}-1\right) B_{n} B_{n+1}-m B_{j}}{6 m^{2} \sum_{i=1}^{j}(-1)^{i+j} B_{n+i}^{2}+\left((-1)^{j} m^{2}-1\right) B_{n} B_{n+1}+m B_{j}} \\
& \quad=\frac{m B_{j+1}+1}{m B_{j+1}-1} \cdot \frac{m \alpha^{j}+1}{m \alpha^{j}-1} \tag{36}
\end{align*}
$$

and

$$
\begin{align*}
& \prod_{n=1}^{\infty} \frac{6 m^{2} \sum_{i=1}^{j}(-1)^{i+j} C_{n+i}^{2}+\left((-1)^{j} m^{2}-1\right) C_{n} C_{n+1}+8 m B_{j}}{6 m^{2} \sum_{i=1}^{j}(-1)^{i+j} C_{n+i}^{2}+\left((-1)^{j} m^{2}-1\right) C_{n} C_{n+1}-8 m B_{j}} \\
& \quad=\frac{m C_{j+1}+1}{m C_{j+1}-1} \cdot \frac{m \alpha^{j}+1}{m \alpha^{j}-1} \tag{37}
\end{align*}
$$

Proof. Let $g(n)=\frac{B_{n}}{B_{n+j}}$ and $h(x)=\frac{x}{m}$ and observe that, $\lim _{n \rightarrow \infty} g(n+1)=\alpha^{-j}$. From Lemma 3, we have

$$
H(n)=\frac{m\left(B_{n} B_{n+j+1}-B_{n+1} B_{n+j}\right)}{m^{2} B_{n+j} B_{n+j+1}-B_{n} B_{n+1}} .
$$

Applying Lemma 1 to the numerator and lemma 2 to the denominator of $H(n)$, it is easy to have

$$
H(n)=\frac{-m B_{j}}{6 m^{2} \sum_{i=1}^{j}(-1)^{i+j} B_{n+i}^{2}+\left((-1)^{j} m^{2}-1\right) B_{n} B_{n+1}}
$$

Hence,

$$
\sum_{n=1}^{k} \tanh ^{-1} H(n)=\frac{1}{2} \ln \left(\frac{m B_{j+1}+1}{m B_{j+1}-1} \cdot \frac{m B_{j+k+1}-B_{k+1}}{m B_{j+k+1}+B_{k+1}}\right)
$$

and

$$
\sum_{n=1}^{\infty} \tanh ^{-1} H(n)=\frac{1}{2} \ln \left(\frac{m B_{j+1}+1}{m B_{j+1}-1} \cdot \frac{m \alpha^{j}-1}{m \alpha^{j}+1}\right)
$$

Converting the infinite sum identity to infinite product identity, (36) can be obtained directly. Taking $g(n)=\frac{C_{n}}{C_{n+i}}$ and $h(x)=\frac{x}{m}$ in Lemma 3 applying Lemma 1 and Lemma 2 we have

$$
H(n)=\frac{8 m B_{j}}{6 m^{2} \sum_{i=1}^{j}(-1)^{i+j} C_{n+i}^{2}+\left((-1)^{j} m^{2}-1\right) C_{n} C_{n+1}}
$$

and (37) can be obtained similarly.
Theorem 7. The following product identity holds for every natural number m and j.

$$
\begin{aligned}
& \prod_{n=1}^{\infty} \frac{C_{m n+j} C_{m(n+1)+j}-B_{m n+j} B_{m(n+1)+j}-B_{m}}{C_{m n+j} C_{m(n+1)+j}-B_{m n+j} B_{m(n+1)+j}+B_{m}} \\
& \quad=\frac{C_{m+j}+B_{m+j}}{C_{m+j}-B_{m+j}} \cdot \frac{\sqrt{8}-1}{\sqrt{8}+1}
\end{aligned}
$$

Proof. Let $g(n)=\frac{B_{m n+j}}{C_{m n+j}}, h(x)=x$ and observe that $\lim _{n \rightarrow \infty} g(n+1)=\frac{1}{\sqrt{8}}$. From Lemma 3. we have

$$
H(n)=\frac{B_{m n+j} C_{m(n+1)+j}-C_{m n+j} B_{m(n+1)+j}}{C_{m n+j} C_{m(n+1)+j}-B_{m n+j} B_{m(n+1)+j}}
$$

$$
=\frac{-B_{m}}{C_{m n+j} C_{m(n+1)+j}-B_{m n+j} B_{m(n+1)+j}}
$$

and the proof is similar to that of the above theorem.

References

Basu, A., \& Apostol, T. (2000). A new method for investigating euler sums. The Ramanujan Journal, 4(4), 397-419.
Behera, A., \& Panda, G. (1999). On the square roots of triangular numbers. The Fibonacci Quarterly, 73(2), 98-105.
Frontczak, R. (2016). Inverse hyperbolic summations and product identities for fibonacci and lucas numbers. Applied Mathematical Sciences, 10(13), 613-623.
Melham, R., \& Shannon, A. (1995). Inverse trigonometric and hyperbolic summation formulas involving generalized fibonacci numbers. The Fibonacci Quarterly, 33(1), 32-40.
Panda, G. (2009). Some fascinating properties of balancing numbers. In Proc. of Eleventh Internat. Conference on Fibonacci Numbers and Their Applications, Cong. Numerantium, 194, 185-189.

