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In this article we establish some product identities for balancing and Lucas-balancing numbers,
using the telescoping summation formula and inverse hyperbolic tangent function.

Introduction

The balancing sequence, (Bn)n≥1 and the Lucas-balancing
numbers, (Cn)n≥1 satisfy the recurrence relation Bn+1 =

6Bn − Bn−1 and Cn+1 = 6Cn − Cn−1 with the initial values
B0 = 0, B1 = 1,C0 = 1,C1 = 3 [see Behera and Panda
(1999)]. Both of the sequences have the characteristic equa-
tion x2 − 6x + 1 = 0. Hence, for the value α = 3 +

√
8 the nth

term of these sequences can be written as

Bn =
αn − α−n

2
√

8
and Cn =

αn + α−n

2
. (1)

Melham and Shannon in Melham and Shannon (1995) inves-
tigated many inverse trigonometric and hyperbolic summa-
tion formulas involving generalized Fibonacci numbers. For
instance,

∞∏
k=1

F2k+2 + 1
F2k+2 − 1

= 3 and
∞∑

n=1

tanh−1
( 1

F2n+2

)
=

ln3
2
.

Frontczak in Frontczak (2016) investigated several inverse
hyperbolic summation and product identities for Fibonacci
and Lucas numbers. The present paper deals with finding
product identities for balancing and Lucas-balancing num-
bers.

Preliminaries

The following is the generalized telescoping summation
formula [Basu and Apostol (2000),Equation (2.1)]

N∑
k=1

[ f (k)− f (k+m)] =

m∑
k=1

f (k)−
m∑

k=1

f (k+N), for N ≥ m ≥ 1

(2)
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and similarly the alternating telescoping summation formula
is

(3)

N∑
k =1

(−1)k−1[ f (k) + (−1)m−1 f (k + m)]

=

m∑
k=1

(−1)k−1 f (k) + (−1)N−1
m∑

k=1

(−1)k−1 f (k + N).

If f (N)→ 0 as N → ∞, then from (2) and (3), we obtain
∞∑

k=1

[ f (k) − f (k + m)] =

m∑
k=1

f (k) (4)

and

∞∑
k=1

(−1)k−1[ f (k) + (−1)m−1 f (k + m)] =

m∑
k=1

(−1)k−1 f (k). (5)

The following product identity is useful:

m∏
k=1

f (k) =

dm/2e∏
k=1

f (2k − 1)
bm/2c∏
k=1

f (2k), (6)

where bxc and dxe denote the floor and ceiling function of x
respectively. Moreover,

2q∏
k=1

f (k) =

q∏
k=1

f (2k − 1) f (2k)

and
2q−1∏
k=1

f (k) =

q∏
k=1

f (2k − 1)
q−1∏
k=1

f (2k)

with the trivial product identity

0∏
k=1

f (k) = 1.

Using (1) it is easy to get the following identities involving
balancing and Lucas-balancing numbers [see Panda (2009)].

αn + 1
αn − 1

=

√
8Bn

Cn − 1
=

Cn + 1
√

8Bn

(7)

1
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B2n = 2BnCn (8)

C2n + 1 = 2C2
n (9)

C2n − 1 = 16B2
n (10)

The following inverse hyperbolic function identities are very
important for proving our main results.

tanh−1x + tanh−1y = tanh−1
( x + y
1 + xy

)
, xy < 1 (11)

tanh−1x − tanh−1y = tanh−1
( x − y
1 − xy

)
, xy > −1 (12)

tanh−1
( x

y

)
=

1
2

ln
(y + x
y − x

)
, |x|< |y| (13)

The following two lemmas are required for proving some
of our main results.

Lemma 1. For every natural number m and n, the following
identities hold.

(a) BnBn+m+1 − Bn+1Bn+m = −Bm

(b) CnCn+m+1 −Cn+1Cn+m = 8Bm

Proof. We prove (a) only. Using (1) and the fact αβ = 1, we
have

BnBn+m+1 − Bn+1Bn+m

=
αn − βn

α − β
·
αn+m+1 − βn+m+1

α − β
−
αn+1 − βn+1

α − β
·
αn+m − βn+m

α − β

=
1

(α − β)2 [αm(α −
1
α

) − βm(β −
1
β

)]

= −
αm − βm

α − β
= −Bm

The proof of (b) is similar. �

Lemma 2. For every natural number m and n, the following
identities hold.

(a) Bn+mBn+m+1 = 6
m∑

i=1

(−1)i+mB2
n+i + (−1)mBnBn+1

(b) Cn+mCn+m+1 = 6
m∑

i=1

(−1)i+mC2
n+i + (−1)mCnCn+1

Proof. We prove (a) only. The proof of (b) is similar. Our
proof is based on mathematical induction on m. Since

Bn+1Bn+2 = Bn+1(6Bn+1 − Bn) = 6B2
n+1 − BnBn+1,

the identity holds for m = 1. Assume that the identity holds
for every natural number m ≤ k. That is,

Bn+kBn+k+1 = 6
k∑

i=1

(−1)i+kB2
n+i + (−1)kBnBn+1.

It is sufficient to show that the identity holds for m = k + 1.

Bn+k+1Bn+k+2 = 6B2
n+k+1 − Bn+kBn+k+1

= 6B2
n+k+1 − [6

k∑
i=1

(−1)i+kB2
n+i + (−1)kBnBn+1]

= 6[B2
n+k+1 −

k∑
i=1

(−1)i+kB2
n+i] + (−1)k+1BnBn+1

= 6
k+1∑
i=1

(−1)i+k+1B2
n+i + (−1)k+1BnBn+1.

�

The following is the main reslut of FrontczakFrontczak
(2016):

Lemma 3. Let g(x) and h(x) be real functions of one variable
and let h(x) be composite with h(x) = h(g(x)) < 1.

a) Define H(x) by

H(x) =
h(g(x)) − h(g(x + 1))

1 − h(g(x))h(g(x + 1))

Then we have

k∑
n=1

tanh−1H(n) = tanh−1h(g(1)) − tanh−1h(g(k + 1))

and

∞∑
n=1

tanh−1H(n) = tanh−1h(g(1)) − lim
k+1→∞

tanh−1h(g(k + 1))

b) Define H∗(x) by

H∗(x) =
h(g(x)) + h(g(x + 1))

1 + h(g(x))h(g(x + 1))

Then we have

k∑
n =1

(−1)n+1tanh−1H∗(n) = tanh−1h(g(1))

+ (−1)k+1tanh−1h(g(k + 1))

and

∞∑
n =1

(−1)n+1tanh−1H∗(n) = tanh−1h(g(1))

+ lim
k+1→∞

(−1)k+1tanh−1h(g(k + 1))
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Infinite product identities

Theorem 1. For q, n ∈ Z+ the following infinite product
identities hold.

(14)

∞∏
k =1

B(2n−1)(2k+2q−1) + B(2n−1)(2q−1)

B(2n−1)(2k+2q−1) − B(2n−1)(2q−1)

=
1

(
√

8)2q−1

q∏
k=1

C(2n−1)(2k−1)

B(2n−1)(2k−1)

q−1∏
k=1

C(2n−1)2k

B(2n−1)2k

∞∏
k=1

B2n(2k+2q−1) + B2n(2q−1)

B2n(2k+2q−1) − B2n(2q−1)
=

1

(
√

8)2q−1

2q−1∏
k=1

C2nk

B2nk
(15)

∞∏
k=1

B4n(k+q) + B4nq

B4n(k+q) − B4nq
=

1
8q

2q∏
k=1

C2nk

B2nk
(16)

and

∞∏
k=1

B(2n−1)(2k+2q) + B(2n−1)2q

B(2n−1)(2k+2q) − B(2n−1)2q
=

1
8q

q∏
k=1

C(2n−1)(2k−1)C(2n−1)2k

B(2n−1)(2k−1)B(2n−1)2k

(17)

Proof. Taking f (k) = tanh−1(α−2pk) in (4) and using (12)
and(1), we obtain

∞∑
k=1

tanh−1
[ Bpm

Bp(2k+m)

]
=

m∑
k=1

tanh−1
[ 1
α2pk

]
Converting the infinite sum identity to infinite product iden-
tity and employing the identities (7)-(10), we have

∞∏
k=1

Bp(2k+m) + Bpm

Bp(2k+m) − Bpm
=

m∏
k=1

C2pk + 1
√

8B2pk

=
1

(
√

8)m

m∏
k=1

Cpk

Bpk
(18)

Now, setting p = 2n − 1 and m = 2q − 1 in (18) and using
(6), we have

∞∏
k=1

B(2n−1)(2k+2q−1) + B(2n−1)(2q−1)

B(2n−1)(2k+2q−1) − B(2n−1)(2q−1)

=
1

(
√

8)2q−1

2q−1∏
k=1

C(2n−1)k

B(2n−1)k

=
1

(
√

8)2q−1

q∏
k=1

C(2n−1)(2k−1)

B(2n−1)(2k−1)

q−1∏
k=1

C(2n−1)2k

B(2n−1)2k

which proves (14).

Setting p = 2n and m = 2q − 1 in (18), it is easy to get
(15). Similarly, Setting p = 2n and m = 2q in (18) proves
(16). Further, p = 2n−1 and m = 2q in (18) proves (17). �

Theorem 2. For q, n ∈ Z+ the following infinite product
identities hold.

∞∏
k=1

B4n(2k+q−1) + B4nq

B4n(2k+q−1) − B4nq
=

1

(
√

8)q

q∏
k=1

C2n(2k−1)

B2n(2k−1)
(19)

∞∏
k=1

B(4n−2)(2k+q−1) + B(2n−1)2q

B(4n−2)(2k+q−1) − B(2n−1)2q
=

1

(
√

8)q

q∏
k=1

C(2n−1)(2k−1)

B(2n−1)(2k−1)

(20)
∞∏

k=1

B(2n−1)(2k+2q−1) + B(2n−1)2q

B(2n−1)(2k+2q−1) − B(2n−1)2q
=

1
8q

2q∏
k=1

C(2n−1)(2k−1) + 1
B(2n−1)(2k−1)

(21)
and

(22)

∞∏
k =1

B2(2n−1)(k+q−1) + B(2n−1)(2q−1)

B2(2n−1)(k+q−1) − B(2n−1)(2q−1)

=
1

(
√

8)2q−1

2q−1∏
k=1

C(2n−1)(2k−1) + 1
B(2n−1)(2k−1)

Proof. Taking f (k) = tanh−1(α−p(2k−1)) in (4) and using (12)
and (1), we obtain

∞∑
k=1

tanh−1
[ Bpm

Bp(2k+m−1)

]
=

m∑
k=1

tanh−1
[ 1
αp(2k−1)

]
Converting the infinite sum identity to infinite product iden-
tity, we have

∞∏
k=1

Bp(2k+m−1) + Bpm

Bp(2k+m−1) − Bpm
=

m∏
k=1

αp(2k−1) + 1
αp(2k−1) − 1

(23)

Using (6)-(10) in (23) for appropriate choice of p and m, the
proof of (19)-(22) follows. �

Theorem 3. For q, n ∈ Z+ the following infinite product
identities hold.

∞∏
k=1

B4n(k+q) + (−1)k−1B4nq

B4n(k+q) + (−1)kB4nq
=

q∏
k=1

C2n(2k−1)B4nk

B2n(2k−1)C4nk
(24)

(25)

∞∏
k =1

B(2n−1)(2k+2q) + (−1)k−1B(2n−1)2q

B(2n−1)(2k+2q−1) + (−1)kB(2n−1)2q

=

q∏
k=1

C(2n−1)(2k−1)B(2n−1)2k

B(2n−1)(2k−1)C(2n−1)2k

(26)

∞∏
k =1

C2n(2k+2q−1) + (−1)k−1C2n(2q−1)

C2n(2k+2q−1) + (−1)kC2n(2q−1)

=
1
√

8

q∏
k=1

C2n(2k−1)

B2n(2k−1)

q−1∏
k=1

B4nk

C4nk



4 RAYAGURU & PANDA

and

(27)

∞∏
k =1

C(2n−1)(2k+2q−1) + (−1)k−1C(2n−1)(2q−1)

C(2n−1)(2k+2q−1) + (−1)kC(2n−1)(2q−1)

=
1
√

8

q∏
k=1

C(2n−1)(2k−1)

B(2n−1)(2k−1)

q−1∏
k=1

B(2n−1)2k

C(2n−1)2k

Proof. Taking f (k) = tanh−1(α−2pk) in (5), setting m = 2q
and using (12) and (1) we obtain

∞∑
k=1

(−1)k−1tanh−1
[ B2pq

Bp(2k+2q)

]
=

2q∑
k=1

(−1)k−1tanh−1
[ 1
α2pk

]
and hence

∞∏
k=1

Bp(2k+2q) + (−1)k−1B2pq

Bp(2k+2q) + (−1)kB2pq
=

2q∏
k=1

α2pk + (−1)k−1

α2pk + (−1)k

=

q∏
k=1

α2p(2k−1) + 1
α2p(2k−1) − 1

q∏
k=1

α4pk − 1
α4pk + 1

=

q∏
k=1

√
8B2p(2k−1)

C2p(2k−1) − 1

√
8B4pk

C4pk + 1

=

q∏
k=1

Cp(2k−1)

Bp(2k−1)

B2pk

C2pk

Setting p = 2n and p = 2n − 1 above, proof of (24) and
(25) follows respectively.
Taking f (k) = tanh−1(α−2pk) in (5), setting m = 2q − 1 and
using (11) and (1) we obtain

∞∑
k=1

(−1)k−1tanh−1
[ Cp(2q−1)

Cp(2k+2q−1)

]
=

2q−1∑
k=1

(−1)k−1tanh−1
[ 1
α2pk

]
and hence

∞∏
k=1

Cp(2k+2q−1) + (−1)k−1Cp(2q−1)

Cp(2k+2q−1) + (−1)kCp(2q−1)

=

2q−1∏
k=1

α2pk + (−1)k−1

α2pk + (−1)k

=

q∏
k=1

α2p(2k−1) + 1
α2p(2k−1) − 1

q−1∏
k=1

α4pk − 1
α4pk + 1

=

q∏
k=1

√
8B2p(2k−1)

C2p(2k−1) − 1

q−1∏
k=1

√
8B4pk

C4pk + 1

=
1
√

8

q∏
k=1

Cp(2k−1)

Bp(2k−1)

q−1∏
k=1

B2pk

C2pk

Setting p = 2n and p = 2n − 1 above, proof of (26) and
(27) follows respectively. �

Theorem 4. For q, n ∈ Z+ the following infinite product
identities hold.

(28)
∞∏

k =1

B4n(2k+2q−1) + (−1)k−1B8nq

B4n(2k+2q−1) + (−1)kB8nq
=

q∏
k=1

C2n(4k−3)B2n(4k−1)

B2n(4k−3)C2n(4k−1)

(29)

∞∏
k =1

B(4n−2)(2k+2q−1) + (−1)k−1B(2n−1)4q

B(4n−2)(2k+2q−1) + (−1)kB(2n−1)4q

=

q∏
k=1

C(2n−1)(4k−3)B(2n−1)(4k−1)

B(2n−1)(4k−3)C(2n−1)(4k−1)

(30)

∞∏
k =1

B(2n−1)(2k+2q−1) + (−1)k−1B(2n−1)2q

B(2n−1)(2k+2q−1) + (−1)kB(2n−1)2q

=

q∏
k=1

(C(2n−1)(4k−3) + 1)B(2n−1)(4k−1)

(C(2n−1)(4k−1) + 1)B(2n−1)(4k−3)

(31)

∞∏
k =1

C8n(k+q−1) + (−1)k−1C4n(2q−1)

C8n(k+q−1) + (−1)kC4n(2q−1)

=
1
√

8

q∏
k=1

C2n(4k−3)

B2n(4k−3)

q−1∏
k=1

B2n(4k−1)

C2n(4k−1)

(32)

∞∏
k =1

C(8n−4)(k+q−1) + (−1)k−1C(4n−2)(2q−1)

C(8n−4)(k+q−1) + (−1)kC(4n−2)(2q−1)

=
1
√

8

q∏
k=1

C(2n−1)(4k−3)

B(2n−1)(4k−3)

q−1∏
k=1

B(2n−1)(4k−1)

C(2n−1)(4k−1)

and

(33)

∞∏
k =1

C(4n−2)(k+q−1) + (−1)k−1C(2n−1)(2q−1)

C(4n−2)(k+q−1) + (−1)kC(2n−1)(2q−1)

=
1
√

8

q∏
k=1

(C(2n−1)(4k−3) + 1)
B(2n−1)(4k−3)

q−1∏
k=1

B(2n−1)(4k−1)

(C(2n−1)(4k−1) + 1)

Proof. Taking f (k) = tanh−1(α−p(2k−1)) in (5), setting m = 2q
and using (12) and (1), we obtain

∞∑
k=1

(−1)k−1tanh−1
[ B2pq

Bp(2k+2q−1)

]
=

2q∑
k=1

(−1)k−1tanh−1
[ 1
αp(2k−1)

]
(34)
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Proof of the identities (28)-(30) follows from (34).
Taking f (k) = tanh−1(α−p(2k−1)) in (5), setting m = 2q−1 and
using (11) and (1) we obtain

∞∑
k=1

(−1)k−1tanh−1
[ Cp(2q−1)

C2p(k+q−1)

]
=

2q−1∑
k=1

(−1)k−1tanh−1
[ 1
αp(2k−1)

]
(35)

Proof of (31)-(33) follows from (35). �

Theorem 5. If p, j, t and m are natural numbers, then the
following identities are true for balancing numbers.

∞∏
n=1

t2Bm
pn+ jB

m
p(n+1)+ j − 1 + t(Bm

p(n+1)+ j − Bm
pn+ j)

t2Bm
pn+ jB

m
p(n+1)+ j − 1 − t(Bm

p(n+1)+ j − Bm
pn+ j)

=
tBm

p+ j + 1

tBm
p+ j − 1

,

and

∞∏
n =1

t2Bm
pn+ jB

m
p(n+1)+ j + 1 + (−1)n+1t(Bm

p(n+1)+ j + Bm
pn+ j)

t2Bm
pn+ jB

m
p(n+1)+ j + 1 − (−1)n+1t(Bm

p(n+1)+ j + Bm
pn+ j)

=
tBm

p+ j + 1

tBm
p+ j − 1

Replacing Bn by Cn, two such identities can be obtained for
the Lucas-balancing numbers.

Proof. Taking g(n) = Bpn+ j and h(x) = 1
txm in Lemma 3, we

have

H(n) =
t(Bm

p(n+1)+ j − Bm
pn+ j)

t2Bm
pn+ jB

m
p(n+1)+ j − 1

and

H∗(n) =
t(Bm

p(n+1)+ j + Bm
pn+ j)

t2Bm
pn+ jB

m
p(n+1)+ j + 1

.

Hence,

k∑
n=1

tanh−1H(n) =
1
2

ln
( tBm

p+ j + 1

tBm
p+ j − 1

·
tBm

p(k+1)+ j + 1

tBm
p(k+1)+ j − 1

)
,

k∑
n=1

(−1)n+1tanh−1H∗(n) =
1
2

ln
( tBm

p+ j + 1

tBm
p+ j − 1

·
tBm

p(k+1)+ j + (−1)k+1

tBm
p(k+1)+ j − (−1)k+1

)
,

and

∞∑
n=1

tanh−1H(n) =

∞∑
n=1

(−1)n+1tanh−1H∗(n) =
1
2

ln
( tBm

p+ j + 1

tBm
p+ j − 1

)
.

Converting the infinite sum identity to infinite product
identity, the result follows immediately. �

Corollary 1. Putting p = 2, t = m = 1 in Theorem 5, we
have

B j+2 + 1
B j+2 − 1

=



∞∏
n=1

B2
2n+ j+1 − 2 + 2C2n+ j+1

B2
2n+ j+1 − 2 − 2C2n+ j+1

∞∏
n=1

B2n+ j+1 + 6(−1)n+1

B2n+ j+1 − 6(−1)n+1

∞∏
n=1

C2
2n+ j+1 − 17 + 16C2n+ j+1

C2
2n+ j+1 − 17 − 16C2n+ j+1

∞∏
n=1

C2
2n+ j+1 − 1 + 48(−1)n+1B2n+ j+1

C2
2n+ j+1 − 1 − 48(−1)n+1B2n+ j+1

and

C j+2 + 1
C j+2 − 1

=



∞∏
n=1

C2
2n+ j+1 + 7 + 16B2n+ j+1

C2
2n+ j+1 + 7 − 16B2n+ j+1

∞∏
n=1

C2
2n+ j+1 + 9 + 6(−1)n+1C2n+ j+1

C2
2n+ j+1 + 9 − 6(−1)n+1C2n+ j+1

∞∏
n=1

B2
2n+ j+1 + 1 + 2B2n+ j+1

B2
2n+ j+1 + 1 − 2B2n+ j+1

∞∏
n=1

4B2
2n+ j+1 + 5 + 3(−1)n+1C2n+ j+1

4B2
2n+ j+1 + 5 − 3(−1)n+1C2n+ j+1

.

Theorem 6. If α = 3 +
√

8 and m, j ∈ N, then

∞∏
n =1

6m2
j∑

i =1

(−1)i+ jB2
n+i + ((−1) jm2 − 1)BnBn+1 − mB j

6m2
j∑

i =1

(−1)i+ jB2
n+i + ((−1) jm2 − 1)BnBn+1 + mB j

=
mB j+1 + 1
mB j+1 − 1

·
mα j + 1
mα j − 1

(36)

and

∞∏
n =1

6m2
j∑

i =1

(−1)i+ jC2
n+i + ((−1) jm2 − 1)CnCn+1 + 8mB j

6m2
j∑

i =1

(−1)i+ jC2
n+i + ((−1) jm2 − 1)CnCn+1 − 8mB j

=
mC j+1 + 1
mC j+1 − 1

·
mα j + 1
mα j − 1

(37)

Proof. Let g(n) = Bn
Bn+ j

and h(x) = x
m and observe that,

limn→∞g(n + 1) = α− j. From Lemma 3, we have

H(n) =
m(BnBn+ j+1 − Bn+1Bn+ j)
m2Bn+ jBn+ j+1 − BnBn+1

.
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Applying Lemma 1 to the numerator and lemma 2 to the de-
nominator of H(n), it is easy to have

H(n) =
−mB j

6m2
j∑

i=1

(−1)i+ jB2
n+i + ((−1) jm2 − 1)BnBn+1

.

Hence,

k∑
n=1

tanh−1H(n) =
1
2

ln
(mB j+1 + 1
mB j+1 − 1

·
mB j+k+1 − Bk+1

mB j+k+1 + Bk+1

)
and

∞∑
n=1

tanh−1H(n) =
1
2

ln
(mB j+1 + 1
mB j+1 − 1

·
mα j − 1
mα j + 1

)
.

Converting the infinite sum identity to infinite product iden-
tity, (36) can be obtained directly. Taking g(n) = Cn

Cn+ j
and

h(x) = x
m in Lemma 3, applying Lemma 1 and Lemma 2 we

have

H(n) =
8mB j

6m2
j∑

i=1

(−1)i+ jC2
n+i + ((−1) jm2 − 1)CnCn+1

and (37) can be obtained similarly. �

Theorem 7. The following product identity holds for every
natural number m and j.

∞∏
n =1

Cmn+ jCm(n+1)+ j − Bmn+ jBm(n+1)+ j − Bm

Cmn+ jCm(n+1)+ j − Bmn+ jBm(n+1)+ j + Bm

=
Cm+ j + Bm+ j

Cm+ j − Bm+ j
·

√
8 − 1
√

8 + 1

Proof. Let g(n) =
Bmn+ j

Cmn+ j
, h(x) = x and observe that

limn→∞g(n + 1) = 1√
8

. From Lemma 3, we have

H(n) =
Bmn+ jCm(n+1)+ j −Cmn+ jBm(n+1)+ j

Cmn+ jCm(n+1)+ j − Bmn+ jBm(n+1)+ j

=
−Bm

Cmn+ jCm(n+1)+ j − Bmn+ jBm(n+1)+ j

and the proof is similar to that of the above theorem. �
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