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In this paper, we derive the forbidden set and discuss the global behavior of all solutions of
the difference equation

xn+1 =
Axn−k

B + C
∏k

i=0 xn−i
, n = 0, 1, . . . ,

where A, B,C are positive real numbers and the initial conditions x−k, . . . , x−1, x0 are real num-
bers. This equation was discussed by some authors. Although we have an explicit formula for
the solutions of that equation, the global behavior is worth to be discussed.

Introduction

Difference equations, although their forms look very sim-
ple, it is extremely difficult to understand thoroughly the
global behaviors of their solutions. One can refer to (Agar-
wal, 1992; Camouzis & Ladas, 2008; Grove & Ladas, 2005;
Kocic & Ladas, 1993; Kulenović & Ladas, 2002). The study
of nonlinear rational difference equations of higher order is
of paramount importance, since we still know so little about
such equations.

The aforementioned equation and some special cases at-
tract many authors.

Elabbasy, El-Metwally, & Elsayed (2007) investigated the
global stability, boundedness and the periodicity of the posi-
tive solutions of the difference equation

xn+1 =
αxn−k

β + γ
∏k

i=0 xn−i
, n = 0, 1, . . . , (1)

with nonnegative real numbers α, β, γ, positive real initial
conditions and positive integer k. They introduced an explicit
formula of the solutions of equation (1).

They claimed that the positive equilibrium point is locally
asymptotically stable for k , 1 when α > β. Also they
claimed that the positive equilibrium point is a global attrac-
tor. But unfortunately, the positive equilibrium point is not
locally asymptotically stable for all values of α, β and all
values of k. In fact the associated characteristic equation to
the linearized equation associated with equation (1) has the
root β

α
and k other roots with modulus 1. Also, the positive

equilibrium point is not a global attractor when α > β, since
every solution converges to a (k + 1)-periodic solution when
α > β.

Email: abuzead73@yahoo.com

Stević (2012) described the behavior of (well-defined) so-
lutions of the difference equation xn = xn−k

b+cxn−1...xn−k
, n =

0, 1, . . . .
Cinar (2004b; 2004c) obtained and discussed the positive

solutions of the rational difference equations

xn+1 =
xn−1

1 + xnxn−1
, n = 0, 1, . . . ,

and
xn+1 =

axn−1

1 + bxnxn−1
, n = 0, 1, . . . ,

where a, b are positive real numbers. Cinar (2004a) also dis-
cussed the behavior of the difference equation

xn+1 =
xn−1

−1 + xnxn−1
, n = 0, 1, . . . .

Stević (2004) showed that every positive solution of the dif-
ference equation

xn+1 =
xn−1

1 + xnxn−1
, n = 0, 1, . . . ,

converges to zero.
Aloqeili (2006) investigated the dynamics of the rational

difference equation

xn+1 =
xn−1

a − xnxn−1
, n = 0, 1, . . . ,

where a is a positive real number.
Andruch-Sobi & Migda (2006) investigated the asymp-

totic behavior of solutions of the equation

xn+1 =
axn−1

b + cxnxn−1
, n = 0, 1, . . . ,

with positive parameters a and c, negative parameter b and
nonnegative initial conditions.
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They also used the explicit formula for the solutions of the
equation

xn+1 =
axn−1

b + cxnxn−1
, n = 0, 1, . . . ,

with positive parameters and nonnegative initial conditions in
investigating their behavior (Andruch-Sobi & Migda, 2009).

Sedaghat (2009) determined the global behavior of all so-
lutions of the rational difference equations

xn+1 =
axn−1

xnxn−1 + b
, and xn+1 =

axnxn−1

xn + bxn−2
, n = 0, 1, . . . ,

where a, b > 0.
Bajo & Liz (2011) studied the global behavior of the

second-order nonlinear difference equation

xn+1 =
xn−1

a + bxnxn−1
, n = 0, 1, . . . ,

with real parameters a, b and real initial conditions.
Khalaf-Allah (2009) investigated the behavior and peri-

odic nature of the two difference equations

xn+1 =
xn−2

±1 + xnxn−1xn−2
, n = 0, 1, . . . .

Cinar, Karatas, & Yalcinkaya (2007) studied the solutions
of the difference equation

xn+1 =
xn−3

−1 + xnxn−1xn−2xn−3
, n = 0, 1, . . . .

R. Karatas & Cinar (2007) studied the solutions of the dif-
ference equation

xn+1 =
axn−(2k+2)

−a +
∏2k+2

i=0 xn−i
, n = 0, 1, . . . ,

with real initial conditions, positive real number a and posi-
tive integer k.

C. Karatas & Yalcinkaya (2011) studied the solutions of
the difference equation

xn+1 =
Axn−(2k+1)

−A +
∏2k+1

i=0 xn−i
, n = 0, 1, . . . ,

with real initial conditions, positive real number A and posi-
tive integer k.

In this paper, we discuss the global behavior of all solu-
tions of the difference equation

xn+1 =
Axn−k

B + C
∏k

i=0 xn−i
, n = 0, 1, . . . , (2)

where A, B,C are positive real numbers and the initial condi-
tions x−k, . . . , x−1, x0 are real numbers.

Linearized stability and solutions of equation (2)

In this section we introduce an explicit formula for the
solutions of the difference equation (2) and study their lin-
earized stabilities.

To consider all solutions of equation (2), we determine
the forbidden set, which is the set of all initial points
(x−k, x−k+1, . . . , x0) of equation (2) such that their corre-
sponding solutions are not well-defined.

It is true that if {xn}
∞
n=−k is a solution of equation (2) with

initial conditions x−k, x−k+1, . . . , x0 such that x−k . . . x−1x0 =

0, then the solution {xn}
∞
n=−k is well-defined.

Now suppose that x−i , 0, for all i ∈ {0, 1, . . . , k}. We
multiply both sides of equation (2) by xnxn−1 . . . xn−k+1 and
substitute

xnxn−1 . . . xn−k =
1
vn
,

we obtain the first order nonhomogeneous equation

vn+1 =
B
A

vn +
C
A
, v0 =

1
x0x−1 . . . x−k

. (3)

It is clear that the mapping h(x) = B
A x + C

A is invertible and
its inverse is h−1(x) = A

B x − C
B .

We try to deduce the forbidden set of equation (2).
For, suppose that we start from an initial point

(x−k, . . . , x−1, x0) such that x−k . . . x−1x0 = − B
C . The back-

ward orbits vn = 1
xn xn−1...xn−k

satisfy the difference equation

vn = h−1(vn−1) =
A
B

vn−1 −
C
B

with
v0 =

1
x0x−1 . . . x−k

= −
C
B
,

then we obtain

vn =
1

xnxn−1 . . . xn−k
= h−n(v0) = −

C
B

n∑
l=0

(
A
B

)l.

That is
xnxn−1 . . . xn−k = −

B
C
∑n

l=0( A
B )l

.

On the other hand, we can observe that if we start from an
initial point (x−k, . . . , x−1, x0) such that

x−k . . . x−1x0 = −
B

C
∑n0

l=0( A
B )l

for some n0 ∈ N, then according to equation (3) we obtain

vn0 =
1

xn0 xn0−1 . . . xn0−k
= −

C
B
.

This implies that B + Cxn0 xn0−1 . . . xn0−k = 0.
Therefore, xn0+1 is undefined.
These observations lead us to conclude the following re-

sult.



BEHAVIOR OF SOLUTIONS OF A HIGHER ORDER 3

Proposition 1. The forbidden set F1 of equation (2) is

F1 =

∞⋃
n=0

{(u0, u1, . . . , uk) :
k∏

i=0

ui = −
B

C
∑n

l=0( A
B )l
}.

It is clear that the forbidden set F1 is contained entirely in
the interiors of the 2k orthants (a quadrant in 2-dimensional
Euclidean space or an octant in 3-dimensional Euclidean
space) of Rk+1. These orthants are of the form

{(u0, u1, . . . , uk) :
k∏

i=0

ui < 0}.

Now assume that x−i = 0, for some but not all i ∈
{0, 1, . . . , k}. Then

xn =



( A
B )

n−1
k+1 +1 x−k , n = 1, k + 2, 2k + 3, . . .

( A
B )

n−2
k+1 +1 x−k+1, n = 2, k + 3, 2k + 4, . . .
· · ·

· · ·

· · ·

( A
B )

n−k
k+1 +1 x−1, n = k, 2k + 1, 3k + 2, . . .

( A
B )

n−k−1
k+1 +1 x0, n = k + 1, 2k + 2, 3k + 3, . . .

(4)

Theorem 1. Let x−k, x−k+1, . . . , x−1 and x0 be real numbers
such that

µ = x−k x−k+1 . . . x−1x0 , −
B

C
∑n

l=0( A
B )l

for any n ∈ N. Then the solution {xn}
∞
n=−k of equation (2) is

xn =



x−k A
n−1
k+1 +1∏ n−1

k+1
j=0

B(k+1) j+ C
A A(k+1) jµ

∑(k+1) j−1
l=0 ( B

A )l

B(k+1) j+1+ C
A A(k+1) j+1µ

∑(k+1) j
l=0 ( B

A )l
, n = 1, k + 2, 2k + 3, . . .

x−k+1A
n−2
k+1 +1∏ n−2

k+1
j=0

B(k+1) j+1+ C
A A(k+1) j+1µ

∑(k+1) j
l=0 ( B

A )l

B(k+1) j+2+ C
A A(k+1) j+2µ

∑(k+1) j+1
l=0 ( B

A )l
, n = 2, k + 3, 2k + 4, . . .

· · ·

· · ·

· · ·

x−1 A
n−k
k+1 +1∏ n−k

k+1
j=0

B(k+1) j+k−1+ C
A A(k+1) j+k−1µ

∑(k+1) j+k−2
l=0 ( B

A )l

B(k+1) j+k+ C
A A(k+1) j+kµ

∑(k+1) j+k−1
l=0 ( B

A )l
, n = k, 2k + 1, 3k + 2, . . . ,

x0A
n−k−1

k+1 +1∏ n−k−1
k+1

j=0
B(k+1) j+k+ C

A A(k+1) j+kµ
∑(k+1) j+k−1

l=0 ( B
A )l

B(k+1) j+k+1+ C
A A(k+1) j+k+1µ

∑(k+1) j+k
l=0 ( B

A )l
, n = k + 1, 2k + 2, 3k + 3, . . .

(5)

It is convenient to reduce the parameters of (2).

The change of variables k+1

√
C
B xn = yn reduces equation (2)

to the equation

yn+1 =
ryn−k

1 +
∏k

i=0 yn−i
, n = 0, 1, . . . , (6)

where r = A
B .

We will deal with equation (6) rather than equation (2).
To start navigating the global behavior of the difference

equation (6), we classify the nontrivial solutions of equation
(6) into two types of solutions:

• Solutions with initial points (y−k, y−k+1, . . . , y0) such
that y−i = 0, for some but not all i ∈ {0, 1, . . . , k}.

• Solutions with initial points (y−k, y−k+1, . . . , y0) such
that y−i , 0, for all i ∈ {0, 1, . . . , k}.

These two types of solutions exhibit a global behavior
different from each other.

Suppose that y−i , 0, for all i ∈ {0, 1, . . . , k}. From
equation (6) and using the substitution tn = 1

ynyn−1...yn−k
, we

can obtain the linear nonhomogeneous difference equation

tn+1 =
1
r

tn +
1
r
, t0 =

1
y0y−1 . . . y−k

. (7)

Proposition 2. The forbidden set F2 of equation (6) is

F2 =

∞⋃
n=0

{(u0, u1, . . . , uk) :
k∏

i=0

ui = −
1∑n

l=0 rl }.

Theorem 2. Let y−k, y−k+1, . . . , y−1 and y0 be real numbers
such that

α = y−ky−k+1 . . . y−1y0 , −
1∑n

l=0 rl

for any n ∈ N. Then the solution {yn}
∞
n=−k of equation (6) is

yn =



y−kr
n−1
k+1 +1∏ n−1

k+1
j=0

1+α
∑(k+1) j−1

l=0 rl

1+α
∑(k+1) j

l=0 rl
, n = 1, k + 2, 2k + 3, . . . ,

y−k+1r
n−2
k+1 +1∏ n−2

k+1
j=0

1+α
∑(k+1) j

l=0 rl

1+α
∑(k+1) j+1

l=0 rl
, n = 2, k + 3, 2k + 4, . . . ,

· · ·

· · ·

· · ·

y−1r
n−k
k+1 +1∏ n−k

k+1
j=0

1+α
∑(k+1) j+k−2

l=0 rl

1+α
∑(k+1) j+k−1

l=0 rl
, n = k, 2k + 1, 3k + 2, . . . ,

y0r
n−k−1

k+1 +1∏ n−k−1
k+1

j=0

1+α
∑(k+1) j+k−1

l=0 rl

1+α
∑(k+1) j+k

l=0 rl
, n = k + 1, 2k + 2, 3k + 3, . . .

(8)

Corollary 1. Assume that r > 1 and let {yn}
∞
n=−k be a non-

trivial solution of equation (6). If α = y−ky−k+1 . . . y−1y0 = 0
and

α = y−ky−k+1 . . . y−1y0 , −
1∑n

l=0 rl

for any n ∈ N, then the solution {yn}
∞
n=−k is unbounded.

Corollary 2. Assume that r = 1 and

α = y−ky−k+1 . . . y−1y0 , −
1

n + 1

for any n ∈ N. Then the solution {yn}
∞
n=−k of equation (6) is

yn =



y−k
∏ n−1

k+1
j=0

1+(k+1) jα
1+((k+1) j+1)α , n = 1, k + 2, 2k + 3, . . . ,

y−k+1
∏ n−2

k+1
j=0

1+((k+1) j+1)α
1+((k+1) j+2)α , n = 2, k + 3, 2k + 4, . . . ,
· · ·

· · ·

· · ·

y−1
∏ n−k

k+1
j=0

1+((k+1) j+k−1)α
1+((k+1) j+k)α , n = k, 2k + 1, 3k + 2, . . . ,

y0
∏ n−k−1

k+1
j=0

1+((k+1) j+k)α
1+((k+1) j+k+1)α , n = k + 1, 2k + 2, 3k + 3, . . .

(9)
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We end this section with the discussion of the local stabil-
ity of the equilibrium points of equation (6).

We give some preliminaries which will be needed in the
remainder of this section.

Consider the difference equation

xn+1 = f (xn, xn−1, . . . , xn−k), n = 0, 1, . . . , (10)

where f : Rk+1 → R.

Definition 1. (Kocic & Ladas, 1993) An equilibrium point
for equation (10) is a point x̄ ∈ R such that x̄ = f (x̄, x̄, . . . , x̄).

Definition 2. (Kocic & Ladas, 1993)

1. An equilibrium point x̄ for equation (10) is called lo-
cally stable if for every ε > 0, there exists a δ > 0 such
that every solution {xn} with initial conditions

x−k, x−k+1, . . . , x0 ∈]x̄ − δ, x̄ + δ[

is such that
xn ∈]x̄ − ε, x̄ + ε[

for all n ∈ N. Otherwise x̄ is said to be unstable.

2. The equilibrium point x̄ of equation (10) is called lo-
cally asymptotically stable if it is locally stable and
there exists γ > 0 such that for any initial conditions

x−k, x−k+1, . . . , x0 ∈]x̄ − γ, x̄ + γ[,

the corresponding solution {xn} tends to x̄.

3. The equilibrium point x̄ for equation (10) is called a
global attractor if every solution {xn} converges to x̄ as
n→ ∞.

4. The equilibrium point x̄ for equation (10) is called
globally asymptotically stable if it is locally asymptot-
ically stable and global attractor.

Suppose that f is continuously differentiable in some open
neighborhood of x̄.
Let

ai =
∂ f
∂xn−i

(x̄, . . . , x̄), for i = 0, 1, . . . , k

denote the partial derivatives of f (xn, xn−1, . . . , xn−k) with re-
spect to xn−i evaluated at the equilibrium point x̄ of equation
(10). Then the equation

zn+1 =

k∑
i=0

aizn−i , n = 0, 1, . . . , (11)

is called the linearized equation associated with equation
(10) about the equilibrium point x̄, and the equation

λk+1 −

k∑
i=0

aiλ
k−i = 0 (12)

is called the characteristic equation associated with equation
(11) about the equilibrium point x̄.

Theorem 3. (Kocic & Ladas, 1993) Assume that f is a C1

function and let x̄ be an equilibrium point of equation (10).
Then the following statements are true:

1. If all roots of equation (12) lie in the open disk |λ| < 1,
then x̄ is locally asymptotically stable.

2. If at least one root of equation (12) has absolute value
greater than one, then x̄ is unstable.

It is clear that the equilibrium point ȳ = 0 is always an
equilibrium point of equation (6) and the nonzero equilib-
rium points depend on whether k is even or odd.

When k is odd, we have the nonzero equilibrium points
ȳ = ±

k+1
√

r − 1 if r > 1.
When k is even, we have the nonzero equilibrium point

ȳ =
k+1
√

r − 1, r , 1.

Lemma 1. Let P(x) be the polynomial

xk + xk−1 + . . . + x + 1.

Then the zeros of P(x) are of modulus one.

The following theorem describes the local behavior of the
equilibrium points.

Theorem 4. The following statements are true.

1. The equilibrium point ȳ = 0 is locally asymptotically
stable if r < 1 and unstable if r > 1.

2. If k is even, then ȳ =
k+1
√

r − 1 is unstable if r < 1 and
nonhyperbolic if r > 1.

3. If k is odd, then the equilibrium points ȳ = ±
k+1
√

r − 1
are nonhyperbolic points.

Proof. The linearized equation associated with equation (6)
about an equilibrium point ȳ is

zn+1 +
rȳk+1

(1 + ȳk+1)2

k−1∑
i=0

zn−i −
r

(1 + ȳk+1)2 zn−k = 0, n = 0, 1, . . . .

(13)
Its characteristic equation associated with this equation is

λk+1 +
rȳk+1

(1 + ȳk+1)2

k−1∑
i=0

λk−i −
r

(1 + ȳk+1)2 = 0. (14)

Therefore, (1) follows directly.
Equation (13) about a nonzero equilibrium point ȳ is

zn+1 +
r − 1

r

k−1∑
i=0

zn−i −
1
r

zn−k = 0, n = 0, 1, . . . . (15)

Also equation (14) becomes

λk+1 +
r − 1

r

k−1∑
i=0

λk−i −
1
r

= 0. (16)
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Let

f (λ) = λk+1 +
r − 1

r

k−1∑
i=0

λk−i −
1
r
.

We can see that

f (λ) = (λ −
1
r

)
k∑

l=0

λl = (λ −
1
r

)P(λ).

Then the roots of equation (16) are the zeros of f (λ). Using
lemma (1), we see that, the roots of equation (16) are 1

r and
k other roots with modulus 1. Therefore, (2) and (3) follow
directly. �

Global behavior of equation (6)

If we set n = (k + 1)m + i, i = 1, 2, . . . , k + 1 in (8), then
the solution of equation (6) can be written as

y(k+1)m+i = y−(k+1)+irm+1
m∏

j=0

1 + α
∑(k+1) j+i−2

l=0 rl

1 + α
∑(k+1) j+i−1

l=0 rl
,

i = 1, 2, . . . , k + 1 and m = 0, 1, . . .

(17)

This formula is the same as that included in Elabbasy et al.
(2007).

But as

1 + α
∑(k+1) j+i−2

l=0 rl

1 + α
∑(k+1) j+i−1

l=0 rl
=
α + θr−(k+1) j−i+1

r(α + θr−(k+1) j−i)
,

where θ = r − 1 − α, we can write

y(k+1)m+i = y−(k+1)+irm+1
m∏

j=0

1 + α
∑(k+1) j+i−2

l=0 rl

1 + α
∑(k+1) j+i−1

l=0 rl

= y−(k+1)+irm+1
m∏

j=0

α + θr−(k+1) j−i+1

r(α + θr−(k+1) j−i)

= y−(k+1)+i

m∏
j=0

βi( j),

i = 1, 2, . . . , k + 1and m = 0, 1, . . . ,

where

βi( j) =
α + θr−(k+1) j−i+1

α + θr−(k+1) j−i , i = 1, 2, . . . , k + 1.

Theorem 5. Assume that {yn}
∞
n=−k is a solution of equation

(6) such that α , −1∑n
i=0 ri for any n ∈ N. If α = r − 1, then

{yn}
∞
n=−k is a periodic solution with period k + 1.

Proof. If α = r − 1, then θ = 0. Therefore,

y(k+1)m+i = y−(k+1)+i

m∏
j=0

α + θr−(k+1) j−i+1

α + θr−(k+1) j−i = y−(k+1)+i,

i = 1, 2, . . . , k + 1.

�

Proposition 3. Assume that r > 1 and let α , −1∑n
i=0 ri for any

n ∈ N. Then there exists j0 ∈ N such that βi( j) > 0 for all
j ≥ j0.

Proof. We have three situations:

1. If 0 < r − 1 < α, then 0 < θ + α < α. Hence for each
j ∈ N,

α + θr−(k+1) j−i+1 = r−(k+1) j−i+1(αr(k+1) j+i−1 + θ)

> r−(k+1) j−i+1(α + θ) > 0.

It follows that βi( j) > 0 for all j ≥ 0.

2. If 0 < α < r − 1, then 0 < α < θ + α. Hence for each
j ∈ N,

α + θr−(k+1) j−i+1 = r−(k+1) j−i+1(αr(k+1) j+i−1 + θ)

> r−(k+1) j−i+1(α + θ) > 0.

It follows that βi( j) > 0 for all j ≥ 0.

3. If α < 0 < r − 1, then α + θ > 0.

But

lim
j→∞

βi( j) = lim
j→∞

α + θr−(k+1) j−i+1

α + θr−(k+1) j−i = 1.

This implies that there exists j0 ∈ N such that βi( j) > 0
for all j ≥ j0.

In all cases there exists j0 ∈ N such that βi( j) > 0 for
all j ≥ j0.

�

Theorem 6. Assume that {yn}
∞
n=−k is a solution of equation

(6) such that α , r − 1 and α , −1∑n
i=0 ri for any n ∈ N. Then

the following statements are true.

1. If r < 1, then {yn}
∞
n=−k converges to ȳ = 0.

2. If r > 1 and α , 0, then {yn}
∞
n=−k is bounded.

Proof. Let {yn}
∞
n=−k be a solution of equation (6) such that

α , −1∑n
i=0 ri for any n ∈ N.

1. Suppose that r < 1. It is clear that, as the equilib-
rium point 1

r−1 of equation (7) is repelling, every non-
constant solution of equation (7) approaches∞ or −∞
according to the value of t0 = 1

α
.

We shall consider the following situations:

(a) If α > 0, then according to equation (7),∏k
i=0 yn−i > 0 for each n ∈ N. Therefore,

| yn+1 |=
| ryn−k |

| 1 +
∏k

i=0 yn−i |
< r | yn−k |,

n = 0, 1, . . . .
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(b) If r − 1 < α < 0, then according to equation
(7),
∏k

i=0 yn−i > r − 1 for each n ∈ N. That is
1 +
∏k

i=0 yn−i > r for each n ∈ N. Therefore,

| yn+1 |=
| ryn−k |

| 1 +
∏k

i=0 yn−i |
<| yn−k |,

n = 0, 1, . . . .

(c) If −1 < α < r−1, then according to equation (7),
there exists n0 ∈ N such that

∏k
i=0 yn−i = 1

tn
> 0

for each n ≥ n0. Therefore,

| yn+1 |=
| ryn−k |

| 1 +
∏k

i=0 yn−i |
< r | yn−k |,

n ≥ n0.

(d) If α < −1, then according to equation (7),∏k
i=0 yn−i = 1

tn
> 0 for each n > 0. Therefore,

| yn+1 |=
| ryn−k |

| 1 +
∏k

i=0 yn−i |
< r | yn−k |,

n = 0, 1, . . . .

In all cases, yn → 0 as n→ ∞.

2. Suppose that r > 1. Using Proposition 3, there exists
j0 ∈ N such that βi( j) > 0 for all j ≥ j0. Hence for
each i ∈ {1, 2, . . . , k + 1}, we have for large m

y(k+1)m+i = y−(k+1)+i

m∏
j=0

βi( j)

= y−(k+1)+i

j0−1∏
j=0

βi( j)
m∏

j= j0

βi( j)

= y−(k+1)+i

j0−1∏
j=0

βi( j) exp

ln m∏
j= j0

βi( j)


= y−(k+1)+i

j0−1∏
j=0

βi( j) exp

 m∑
j= j0

ln βi( j)

 .
It is sufficient to test the convergence of the series∑∞

j= j0 | ln βi( j) |.
Since lim j→∞

ln βi( j+1)
ln βi( j) = 0

0 , using L’Hospital’s rule we

obtain lim j→∞
ln βi( j+1)

ln βi( j) = 1
rk+1 < 1.

It follows from D’ Alemberts’ test that the series∑∞
j= j0 | ln βi( j) | is convergent.

This ensures that the solution {yn}
∞
n=−k is bounded.

�

We can observe in case r > 1 that, the behavior of the so-
lution {yn}

∞
n=−k is totally different according to whether α = 0

or α , 0. This is obvious in Corollary 1 and Theorem 6.

Theorem 7. Assume that r > 1 and let {yn}
∞
n=−k be a solution

of equation (6) such that α , r − 1 and α , −1∑n
i=0 ri for any

n ∈ N. Then {yn}
∞
n=−k converges to a (k + 1)-periodic solution

{ρ0, ρ1, . . . , ρk} of equation (6) with ρ0ρ1 . . . ρk = r − 1.

Proof. By Theorem 6, there exist k + 1 real numbers ρi ∈ R
such that

lim
j→∞

y(k+1)m+i = ρi, i ∈ {0, 1, . . . , k}.

If we set n = (k + 1)m + i − 1, i = 0, 1, . . . , k in equation (6),
we get

y(k+1)m+i =
ry(k+1)(m−1)+i

1 +
∏k

l=0 y(k+1)(m−1)+i−l+k
,

i = 0, 1, . . . , k and m = 0, 1, . . .

By taking the limit as m→ ∞, we obtain

ρi =
rρi

1 +
∏k

l=0 ρi−l+k
, i = 0, 1, . . . , k.

But from equation (7) we have that

k∏
l=0

yn−l = ynyn−1 . . . yn−k =
1
tn
→ r − 1

as n→ ∞.
This implies that

k∏
i=0

y(k+1)m+i → ρ0ρ1 . . . ρk = r − 1

as m→ ∞.
Therefore, {yn}

∞
n=−k converges to the (k + 1)-periodic solu-

tion
{. . . , ρ0, ρ1, . . . , ρk−1,

r − 1
ρ0ρ1 . . . ρk−1

,

ρ0, ρ1, . . . , ρk−1,
r − 1

ρ0ρ1 . . . ρk−1
, . . .}

�

Case r = 1

We end this work with the discussion of the case r = 1.
If we set r = 1 in equation (17), then we get

y(k+1)m+i = y−(k+1)+i

m∏
j=0

γi( j),

i = 1, 2, . . . , k + 1 and m = 0, 1, . . . ,

(18)

where

γi( j) =
1 + α((k + 1) j + i − 1)

1 + α((k + 1) j + i)
, i = 1, 2, . . . , k + 1.
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Proposition 4. Assume that r = 1 and let α , −1
n+1 for any

n ∈ N. Then there exists j0 ∈ N such that γi( j) > 0 for all
j ≥ j0.

Proof. When α > 0, the result is obvious as γi( j) > 0 for
each j ∈ N.

When α < 0, It is sufficient to see that,

lim
j→∞

γi( j) = lim
j→∞

1 + α((k + 1) j + i − 1)
1 + α((k + 1) j + i)

= 1.

This implies that, there exists j0 ∈ N such that γi( j) > 0 for
all j ≥ j0. �

Theorem 8. Assume that r = 1. Then any solution {yn}
∞
n=−k

of equation (6) with α , 0 and α , −1
n+1 for any n ∈ N

converges to zero.

Proof. Let {yn}
∞
n=−k be a solution of equation (6) such that

α , −1
n+1 for any n ∈ N. Using Proposition 4, there exists

j0 ∈ N such that γi( j) > 0 for all j ≥ j0. Hence for each
i ∈ {1, 2, . . . , k + 1}, we have for large m

y(k+1)m+i = y−(k+1)+i

m∏
j=0

γi( j)

= y−(k+1)+i

j0−1∏
j=0

γi( j)
m∏

j= j0

γi( j)

= y−(k+1)+i

j0−1∏
j=0

γi( j) exp

ln m∏
j= j0

γi( j)


= y−(k+1)+i

j0−1∏
j=0

γi( j) exp

 m∑
j= j0

ln γi( j)


= y−(k+1)+i

j0−1∏
j=0

γi( j) exp

(− m∑
j= j0

ln
1

γi( j)

 .
We shall show that

∞∑
j= j0

ln
1

γi( j)
=

∞∑
j= j0

ln
1 + α((k + 1) j + i)

1 + α((k + 1) j + i − 1)
= ∞,

by considering the series
∑∞

j= j0
α

1+α((k+1) j+i) . But as

lim
j→∞

ln 1 + α((k + 1) j + i)/1 + α((k + 1) j + i − 1)
α/1 + α((k + 1) j + i)

= 1,

using the limit comparison test, we get
∑∞

j= j0 ln 1
γi( j) = ∞.

Therefore,

y(k+1)m+i = y−(k+1)+i

j0−1∏
j=0

γi( j) exp (−
m∑

j= j0

ln
1

γi( j)
)

converges to zero as m→ ∞. �

Example 1. Figure A1 shows that if r = 1.1, y−2 = 1.2,
y−1 = 2 and y0 = −1.3 (α = −3.12), that is (α , r − 1), then
the solution {yn}

∞
n=−2 of equation (6) converges to the period-

3 solution {ρ0, ρ1, ρ2}, where ρ0 = 0.5710, ρ1 = −0.3385 and
ρ2 = 0.5175 (up to 4 decimals), with ρ0ρ1ρ2 = r − 1 = 0.1.

Example 2. Figure A2 shows that if r = 0.7, y−2 = 1.2,
y−1 = 2 and y0 = −1.3 (α = −3.12), that is (α , r − 1), then
the solution {yn}

∞
n=−2 of equation (6) converges to zero.

Example 3. Figure A3 shows that if r = 2, y−2 = 1,
y−1 = 0.25 and y0 = 4 (α = 1), that is (α = r − 1), then
the solution {yn}

∞
n=−2 of equation (6) is of period 3.

Example 4. Figure A4 shows that if r = 1, y−2 = 1.5,
y−1 = −1.2 and y0 = 1.3, then the solution {yn}

∞
n=−2 of equa-

tion (6) converges to zero.

The following example shows the existence of unbounded
solutions.

Example 5. Figure A5 shows that, if r = 2.1, y−2 = 0,
y−1 = 0.2 and y0 = 1.5, then the solution {yn}

∞
n=−2 of equation

(6) is unbounded.
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Appendix
Figures
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Figure A1. yn+1 =
1.1yn−2
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Figure A2. yn+1 =
0.7yn−2
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Figure A3. yn+1 =
2yn−2
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Figure A4. yn+1 =
yn−2
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Figure A5. yn+1 =
2.1yn−2

1+ynyn−1yn−2


	Introduction
	 Linearized stability and solutions of equation (2)
	 Global behavior of equation (6) 
	Case r=1
	References

