Representations for the Drazin inverse of block matrices

Guanjie Yan
Faculty of Science
Guangxi University for Nationalities

Xiaoji Liu
Faculty of Science
Guangxi University for Nationalities

Xiaolan Qin
Faculty of Science
Guangxi University for Nationalities

Yaoming Yu
College of Education
Shanghai Normal University

Abstract

In this paper two explicit representations for the Drazin inverse of a 2×2 block complex matrix M are presented. Moreover, we also present several other representations for the Drazin inverse of M under some conditions and generalize some results in literature.

Introduction

Let $A \in C^{n \times n}$. Then there is a unique matrix $A_{d} \in C^{n \times n}$ such that
(i) $A_{d} A A_{d}=A_{d}$,
(ii) $A A_{d}=A_{d} A$,
(iii) $A^{n+1} A_{d}=A^{n}$,
for some nonnegative integer n. The smallest positive exponent n for which (iii) holds is called the Drazin index of A and it is denoted by $\operatorname{Ind}(A)$. The matrix A_{d} is called the Drazin inverse of A (See, for example, (Ben-Israel \& Greville, 1980, Ch. 4) Drazin (1958), (Piziak \& Odell, 1999, Ch. 5), or (Campbell \& Meyer, 1979, Ch. 7) for details). The study on representations for the Drazin inverse of block matrices stems essentially from finding the general expressions for the solutions to singular systems of differential equations Campbell (1982); Campbell and Meyer (1979); Campbell, Meyer, and Rose (1976).In 1983, Campbell(Campbell et al. (1976)) established an explicit representation for the Drazin inverse of a 2×2 block matrix

$$
M=\left(\begin{array}{ll}
A & B \tag{1}\\
C & D
\end{array}\right),
$$

in terms of the blocks of the partition, where the blocks $A \in C^{n \times n}, B \in C^{n \times m}, C \in C^{m \times n}$ and $D \in C^{m \times m}$. In 2009, Chunyuan Deng and Yimin Wei (Deng and Wei (2009)) finding an explicit representation for the Drazin inverse of a 2×2 block matrix $M=\left(\begin{array}{cc}A & B \\ C & 0\end{array}\right)$, where A and $B C$ are generalized Drazin invertible, if $A^{\pi} A B=0, B C\left(I-A^{\pi}\right)=0$. Afterwards, several authors have investigated this problem under some limited conditions on the blocks of M, which is mainly as follows:

- $B=0$ (or $C=0$). See Meyer and Rose (1977) or (Campbell \& Meyer, 1979, Ch. 7).
- $A B=0, D=0$. See Deng and Wei (2009) .
- $B C=0, D C=0$ (or $B D=0$), and D is nilpotent. See Hartwig, Hall, and Katz (1985).
- $B C A=0, B D=0$, and $D C=0$ (or $B C$ is nilpotent). See Castro-González, Dopazo, and Martí nez Serrano (2009).
- $B C A=0, B C B=0, D C A=0$, and $D C B=0$. See Yang and Liu (2011).
- $B C=0$ and $D C=0$. See Cvetković-Ilić (2008).
- $B C A=0, B C B=0, A B D=0$, and $C B D=0$. See Elliott and Zsidó (1984).
- $B C=0$ and $B D=0$. See Dopazo and Martí nez Serrano (2010).

In this paper, we present respectively the representations for the Drazin inverse of M under the conditions that $A B=0$, $D C=0$ and $A B=0, B D=0$. And we also give several representations for the Drazin inverse of M under some weaker conditions.

Some lemmas and notations

First, we will state some auxiliary lemmas
Lemma 1. (Meyer \& Rose, 1977, Theorems 2.1 and 3.2) or (Campbell \& Meyer, 1979, Theorems 7.7.1 and 7.7.2) Let L and U be of forms

$$
L=\left(\begin{array}{ll}
A & 0 \\
C & B
\end{array}\right) \text { and } U=\left(\begin{array}{cc}
B & C \\
0 & A
\end{array}\right),
$$

respectively. If $s=\operatorname{Ind}(A)$ and $t=\operatorname{Ind}(B)$, then

$$
L_{d}=\left(\begin{array}{cc}
A_{d} & 0 \\
S & B_{d}
\end{array}\right), \quad U_{d}=\left(\begin{array}{cc}
B_{d} & S \\
0 & A_{d}
\end{array}\right)
$$

where

$$
\begin{equation*}
S=\left[\sum_{i=0}^{s-1} B_{d}^{i+2} C A^{i}\right] A^{\pi}+B^{\pi}\left[\sum_{i=0}^{t-1} B^{i} C A_{d}^{i+2}\right]-B_{d} C A_{d} . \tag{2}
\end{equation*}
$$

In addition, $\max \{s, t\} \leq \operatorname{Ind}(L), \operatorname{Ind}(U) \leq s+t$.
Lemma 2. Let $A \in C^{m \times n}, B \in C^{n \times m}$. Then $A(B A)_{d}^{i}=(A B)_{d}^{i} A$ for every integer $i \geq 1$, and $B(A B)^{\pi}=(B A)^{\pi} B$. Moreover, $\operatorname{Ind}(B A)-1 \leq \operatorname{Ind}(A B) \leq \operatorname{Ind}(B A)+1$.

Proof. As in the proof of (Campbell \& Meyer, 1979. Theorem 7.8.4(iii)), we can obtain $(A B)_{d}=A(B A)_{d}^{2} B$. The results follow.

Also, we need the ceiling function $\lceil x\rceil$, the smallest integer greater than or equal to x. In what follows, $A^{0}=I$ and $A^{\pi} \stackrel{\text { def }}{=} I-A A_{d}$ for any square matrix A, and the sum $\Sigma_{i}^{j}=0$ if $i>j$. The following ceiling function ($\lceil k / 2\rceil$) are not repetitive for any positive integer k.

The representation in the following lemma is slightly changed for convenience.
Lemma 3. Hartwig, Wang, \& Wei, 2001, Theorem 2.1) Let $P, Q \in C^{n \times n}$. If $P Q=0$, then

$$
\begin{aligned}
(P+Q)_{d}= & \sum_{i=0}^{2\left[\frac{k}{2}\right]-1} Q^{\pi} Q^{i} P_{d}^{i+1}+\sum_{i=0}^{2\left[\frac{k}{2}\right]-1} Q_{d}^{i+1} P^{i} P^{\pi} \\
= & \sum_{i=0}^{\left[\frac{k}{2}\right]-1} Q^{\pi} Q^{2 i}\left(I+Q P_{d}\right) P_{d}^{2 i+1} \\
& +\sum_{i=0}^{\left[\frac{k}{2}\right]-1} Q_{d}^{2 i+1}\left(I+Q_{d} P\right) P^{2 i} P^{\pi}
\end{aligned}
$$

where $\max \{\operatorname{Ind}(P), \operatorname{Ind}(Q)\} \leq k \leq \operatorname{Ind}(P)+\operatorname{Ind}(Q)$.
Remark 1. Since $(P+Q)=[I, Q]\left[\begin{array}{c}P \\ I\end{array}\right]$ and $\left[\begin{array}{c}P \\ I\end{array}\right][I, Q]=$ $\left[\begin{array}{cc}P & 0 \\ I & Q\end{array}\right]$ where $P Q=0$,
$\operatorname{Ind}\left(\left[\begin{array}{cc}P & 0 \\ I & Q\end{array}\right]\right)-1 \leq \operatorname{Ind}(P+Q) \leq \operatorname{Ind}\left(\left[\begin{array}{cc}P & 0 \\ I & Q\end{array}\right]\right)+1$
by Lemma 2 and then, by Lemma 1

$$
\begin{gathered}
\max \{\operatorname{Ind}(P), \operatorname{Ind}(Q)\}-1 \leq \operatorname{Ind}(P+Q) \\
\operatorname{Ind}(P+Q) \leq \operatorname{Ind}(P)+\operatorname{Ind}(Q)+1
\end{gathered}
$$

if $P Q=0$.

Lemma 4. Catral, Olesky, \& van den Driessche, 2009,
Theorem 2.1)Let M be a matrix of the form (1) with $A=0$ and $D=0$. Then

$$
M_{d}=\left(\begin{array}{cc}
0 & (B C)_{d} B \\
C(B C)_{d} & 0
\end{array}\right)
$$

Furthermore, if $\operatorname{Ind}(B C)=p$, then $\operatorname{Ind}(M) \leq 2 p+1$.
Lemma 5. Let $A \in C^{n \times n}$. Then $\left(A A^{\pi}\right)_{d}=0,\left(A^{2} A_{d}\right)_{d}=$ $A_{d},\left(A^{2} A_{d}\right)^{\pi}=A^{\pi}$, and $\operatorname{Ind}\left(A A^{\pi}\right)=\operatorname{Ind}(A)$ and $\operatorname{Ind}\left(A^{2} A_{d}\right)=$ 1.

Proof. The Jordan canonical form of A permits us to write $A=S(C \oplus N) S^{-1}$, where S and C are nonsingular, and N is nilpotent with index $\operatorname{Ind}(A)$. Thus $A_{d}=S\left(C^{-1} \oplus 0\right) S^{-1}$. Now, it is evident that $A^{2} A_{d}=S(C \oplus 0) S^{-1}$ and $A A^{\pi}=S(0 \oplus N) S^{-1}$, which lead to the affirmations of this lemma.

Some results on the Drazin inverse of 2×2 block matrices

In this section we shall derivate several representations of the Drazin inverse of a 2×2 block matrix of the form (1) under diverse conditions. The following result, our main theorem, is a generalization of (Deng \& Wei. 2009, Theorem 3.1).

Theorem 1. Let M be a matrix of the form (1). If $A B=0$ and $D C=0$, then

$$
M_{d}=\left(\begin{array}{ll}
X A & B Y \tag{3}\\
C X & Y D
\end{array}\right)
$$

where

$$
\begin{align*}
X & =(B C)^{\pi} \sum_{i=0}^{p-1}(B C)^{i} A_{d}^{2 i+2}+\sum_{i=0}^{\left\lceil\frac{s}{2}\right\rceil-1}(B C)_{d}^{i+1} A^{2 i} A^{\pi} \tag{4}\\
Y & =(C B)^{\pi} \sum_{i=0}^{q-1}(C B)^{i} D_{d}^{2 i+2}+\sum_{i=0}^{\left\lceil\frac{t}{2}\right\rceil-1}(C B)_{d}^{i+1} D^{2 i} D^{\pi} \tag{5}
\end{align*}
$$

and $s=\operatorname{Ind}(A), t=\operatorname{Ind}(D), p=\operatorname{Ind}(B C)$ and $q=\operatorname{Ind}(C B)$.
Proof. Let $M=P+Q$, where

$$
P=\left(\begin{array}{cc}
A & 0 \tag{6}\\
0 & D
\end{array}\right), \quad Q=\left(\begin{array}{cc}
0 & B \\
C & 0
\end{array}\right)
$$

The conditions $A B=0$ and $D C=0$ imply $P Q=0$. Thus, by Lemma 3 ,

$$
\begin{aligned}
M_{d}=(P+Q)_{d} & =\sum_{i=0}^{\left\lceil\frac{l}{2}\right\rceil-1} Q^{\pi} Q^{2 i}\left(I+Q P_{d}\right) P_{d}^{2 i+1} \\
& +\sum_{i=0}^{\left\lceil\frac{l}{2}\right\rceil-1} Q_{d}^{2 i+1}\left(I+Q_{d} P\right) P^{2 i} P^{\pi}
\end{aligned}
$$

where $h=s+t \geq \operatorname{Ind}(P), k=2 p+1 \geq \operatorname{Ind}(Q)$ and $l=\max (h, k)$ (by Lemma 4).

Now we consider the matrices mentioned in the above equation. Clearly,

$$
P_{d}=\left(\begin{array}{cc}
A_{d} & 0 \\
0 & D_{d}
\end{array}\right), \quad P^{\pi}=\left(\begin{array}{cc}
A^{\pi} & 0 \\
0 & D^{\pi}
\end{array}\right) .
$$

By Lemma 4 ,

$$
Q_{d}=\left(\begin{array}{cc}
0 & (B C)_{d} B \\
C(B C)_{d} & 0
\end{array}\right)
$$

and then, by Lemma 2 .

$$
Q^{\pi}=\left(\begin{array}{cc}
(B C)^{\pi} & 0 \\
0 & (C B)^{\pi}
\end{array}\right)
$$

Since

$$
Q^{2}=\left(\begin{array}{cc}
B C & 0 \\
0 & C B
\end{array}\right)
$$

for every integer $i \geq 1$,

$$
Q^{2 i}=\left(\begin{array}{cc}
(B C)^{i} & 0 \\
0 & (C B)^{i}
\end{array}\right)
$$

and then

$$
\begin{aligned}
Q_{d}^{2 i} & =\left(\begin{array}{cc}
(B C)_{d}^{i} & 0 \\
0 & (C B)_{d}^{i}
\end{array}\right) \\
Q_{d}^{2 i+1} & =\left(\begin{array}{cc}
0 & B(C B)_{d}^{i+1} \\
(C B)_{d}^{i+1} C & 0
\end{array}\right)
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \sum_{i=0}^{\left\lceil\frac{L}{2} 7-1\right.} Q^{\pi} Q^{2 i}\left(I+Q P_{d}\right) P_{d}^{2 i+1} \\
= & \sum_{i=0}^{\left\lceil\frac{l}{2} 7-1\right.} Q^{\pi} Q^{2 i}\left[\begin{array}{ll}
I & B D_{d} \\
C A_{d} & I
\end{array}\right] P_{d}^{2 i+1} \\
= & \sum_{i=0}^{\Gamma \frac{L}{2} \frac{1}{2}-1}\left[\begin{array}{ll}
(B C)^{\pi}(B C)^{i} A_{d}^{2 i+1} & (B C)^{\pi}(B C)^{i} B D_{d}^{2 i+2} \\
(C B)^{\pi}(C B)^{i} C A_{d}^{2 i+2} & (C B)^{\pi}(C B)^{i} D_{d}^{i+1}
\end{array}\right] \\
= & {\left[\begin{array}{ll}
\sum_{i=0}^{p-1}(B C)^{\pi}(B C)^{i} A_{d}^{2 i+2} A & B \sum_{i=0}^{p-1}(C B)^{\pi}(C B)^{i} D_{d}^{2 i+2} \\
C \sum_{i=0}^{q-1}(B C)^{\pi}(B C)^{i} A_{d}^{2 i+2} & \sum_{i=0}^{q-1}(C B)^{\pi}(C B)^{i} D_{d}^{2 i+2} D
\end{array}\right] }
\end{aligned}
$$

and, similarly,

$$
\begin{aligned}
& \sum_{i=0}^{\left\lceil\frac{l}{2}\right\rceil-1} Q_{d}^{2 i+1}\left(I+Q_{d} P\right) P^{2 i} P^{\pi} \\
= & \sum_{i=0}^{\left\lceil\frac{l}{2}\right\rceil-1}\left[\begin{array}{cc}
(B C)_{d}^{i+1} A^{2 i+1} A^{\pi} & (B C)_{d}^{i+1} B D^{2 i} D^{\pi} \\
(C B)_{d}^{i+1} C A^{2 i} A^{\pi} & (C B)_{d}^{i+1} D^{2 i+1} D^{\pi}
\end{array}\right] \\
= & {\left[\begin{array}{cc}
\sum_{i=0}^{\left\lceil\frac{s}{2}\right\rceil-1}(B C)_{d}^{i+1} A^{2 i+1} A^{\pi} & B \sum_{i=0}^{\left\lceil\frac{s}{2}\right\rceil-1}(C B)_{d}^{i+1} D^{2 i} D^{\pi} \\
C \sum_{i=0}^{\left\lceil\frac{t}{2}\right\rceil-1}(B C)_{d}^{i+1} A^{2 i} A^{\pi} & \sum_{i=0}^{\left\lceil\frac{t}{2}\right\rceil-1}(C B)_{d}^{i+1} D^{2 i+1} D^{\pi}
\end{array}\right] . }
\end{aligned}
$$

Thus the desired result follows directly.

Remark 2. By Lemma 3, (4) and (5), (3) is rewritten as

$$
M_{d}=\left[\begin{array}{cc}
\left(A^{2}+B C\right)_{d} A & B\left(C B+D^{2}\right)_{d} \tag{7}\\
C\left(A^{2}+B C\right)_{d} & \left(C B+D^{2}\right)_{d} D
\end{array}\right] .
$$

(ii) By Remark 1 .

$$
\max \{\operatorname{Ind}(A), \operatorname{Ind}(D), \operatorname{Ind}(B C)\} \leq \operatorname{Ind}(M)
$$

$$
\operatorname{Ind}(M) \leq \operatorname{Ind}(A)+\operatorname{Ind}(D)+2 \operatorname{Ind}(B C)+1
$$

if $A B=0$ and $D C=0$.
By Theorem 1 and Lemma 2 we have the following corollary.

Corollary 1. Let M be a matrix of the form (1) with $A=0$. If $D C=0$, then

$$
M_{d}=\left[\begin{array}{ll}
0 & B Y \tag{8}\\
(C B)_{d} C & Y D
\end{array}\right]
$$

where Y is defined in (5).
Using (7, we can easily see the following results.
Corollary 2. Let M be a matrix of the form (1).
(i) If $A B=0, D C=0$, and $B C=0$, then

$$
M_{d}=\left[\begin{array}{ll}
A_{d} & B D_{d}^{2} \tag{9}\\
C A_{d}^{2} & D_{d}+C B D_{d}^{3}
\end{array}\right]
$$

(ii) If $A B=0, D C=0$, and $C B=0$, then

$$
M_{d}=\left[\begin{array}{ll}
A_{d}+B C A_{d}^{3} & B D_{d}^{2} \tag{10}\\
C A_{d}^{2} & D_{d}
\end{array}\right]
$$

Proof. (i) When $B C=0,7$ becomes

$$
M_{d}=\left[\begin{array}{cc}
A_{d}^{2} A & B\left(C B+D^{2}\right)_{d} \tag{11}\\
C A_{d}^{2} & \left(C B+D^{2}\right)_{d} D
\end{array}\right]
$$

and, by Lemma 2, $(C B)_{d}=0$. Thus, since $D^{2} C B=0$, $\left(C B+D^{2}\right)_{d}=D_{d}^{2}+C B D_{d}^{4}$ by Lemma 3 And then $B(C B+$ $\left.D^{2}\right)_{d}=B D_{d}^{2}$ and $\left(C B+D^{2}\right)_{d} D=D_{d}+C B D_{d}^{3}$. Consequently, (9) holds.
(ii) Similar as the proof of (i).

The next result is an alternative generalization of (Deng \& Wei, 2009, Theorem 3.1).
Theorem 2. Let M be a matrix of the form (1). If $A B=0$ and $B D=0$, then

$$
M_{d}=\left[\begin{array}{c}
X A \\
Z+T+R+D_{d}^{2} C A^{\pi}-D_{d}^{2} C B C X-D_{d} C X A \\
(B C)_{d} B \\
S+D_{d}(C B)^{\pi}
\end{array}\right.
$$

where X is defined in (4),

$$
\begin{align*}
& Z=\sum_{n=0}^{\left\lceil\frac{t}{2}\right\rceil-1}\left[D^{\pi} D^{2 n+1} C(B C)_{d}^{n} X^{2} A+D^{\pi} D^{2 n} C(B C)_{d}^{n} X\right] \\
& T=\sum_{n=1}^{\left\lceil\frac{t}{2}\right\rceil-1}\left(L(n)+D L(n) A_{d}\right)+\sum_{n=0}^{\left\lceil\frac{k}{2}\right\rceil-1}\left(H(n)+D_{d} H(n) A\right), \\
& S=\sum_{n=0}^{\left\lceil\frac{t}{2}\right\rceil-1} D^{\pi} D^{2 n+1}(C B)_{d}^{n+1}+\sum_{n=0}^{q-1} D_{d}^{2 n+1}(C B)^{\pi}(C B)^{n} \\
& R=\sum_{n=0}^{p-1} D_{d}^{2 n+2} C(B C)^{\pi}(B C)^{n}, \\
& L(n)=D^{\pi} D^{2 n} C X^{2} A_{d}^{2 n-1} A-D^{\pi} D^{2 n} \sum_{i=1}^{n-1} C(B C)_{d}^{i+1} A_{d}^{2 n-2 i}, \\
& H(n)=D_{d}^{2 n+1} C(B C)^{\pi} \sum_{i=0}^{n-1}(B C)^{i} A^{2 n-2 i-1}-D_{d}^{2 n+1} C X A^{2 n+1} \tag{12}
\end{align*}
$$

and $s=\operatorname{Ind}(A), t_{1}=\operatorname{Ind}(D), t_{2}=\operatorname{Ind}(P), t=\max \left(t_{1}, t_{2}\right), p=$ $\operatorname{Ind}(B C), q=\operatorname{Ind}(C B)$ and $k=s+2 p+1$.

Proof. Let $M=P+Q$, where

$$
P=\left[\begin{array}{cc}
A & B \\
C & 0
\end{array}\right], \quad Q=\left[\begin{array}{ll}
0 & 0 \\
0 & D
\end{array}\right]
$$

Then

$$
Q_{d}=\left[\begin{array}{ll}
0 & 0 \\
0 & D_{d}
\end{array}\right], \quad Q^{\pi}=\left[\begin{array}{ll}
I & 0 \\
0 & D^{\pi}
\end{array}\right] .
$$

Since $B D=0$ implies $P Q=0$, by Lemma 3,

$$
\begin{aligned}
& M_{d}=(P+Q)_{d}=\sum_{n=0}^{\left\lceil\frac{t}{2}\right\rceil-1} Q^{\pi} Q^{2 n}\left(I+Q P_{d}\right) P_{d}^{2 n+1} \\
& +\sum_{n=0}^{\left\lceil\frac{t}{2}\right\rceil-1} Q_{d}^{2 n+1}\left(I+Q_{d} P\right) P^{2 n} P^{\pi}
\end{aligned}
$$

Since $A B=0$, by Theorem 1 .

$$
P_{d}=\left[\begin{array}{ll}
X A & (B C)_{d} B \\
C X & 0
\end{array}\right], \quad P^{\pi}=\left[\begin{array}{ll}
A^{\pi}-B C X & 0 \\
-C X A & (C B)^{\pi}
\end{array}\right],
$$

where X is defined in (4), and, by Remark 2 (ii),

Thus, from $A B=0$, we have

$$
\begin{aligned}
A X= & A_{d}, \\
(X A)^{k}= & X(A X)^{k-1} A=X A_{d}^{k-1} A, \quad k \geq 1, \\
X B= & (B C)_{d} B, \\
X^{2}= & (B C)^{\pi} \sum_{i=0}^{p-1}(B C)^{i} A_{d}^{2 i+4}+\sum_{i=0}^{\left\lceil\frac{s}{2}\right]-1}(B C)_{d}^{i+2} A^{2 i} A^{\pi} \\
& -(B C)_{d} A_{d}^{2}, \\
(B C)_{d} X^{2} A_{d}= & -(B C)_{d}^{2} A_{d}^{3}
\end{aligned}
$$

and then, by mathematical induction, for every integer $n \geq 1$,

$$
\begin{array}{r}
P_{d}^{2 n+1} \\
\qquad\left[\begin{array}{cc}
X A_{d}^{2 n} A-\sum_{i=1}^{n-1}(B C)_{d}^{i+1} B C A_{d}^{2 n+2-2 i} A \\
C X^{2} A_{d}^{2 n-1} A-\sum_{i=1}^{n-1} C(B C)_{d}^{i+1} A_{d}^{2 n+1-2 i} A \\
+(B C)_{d}^{n} B C X^{2} A & (B C)_{d}^{n+1} B \\
+C(B C)_{d}^{n} X & 0
\end{array}\right],
\end{array}
$$

$$
P^{2 n}=\left[\begin{array}{ll}
\sum_{i=0}^{n}(B C)^{i} A^{2 n-2 i} & 0 \tag{13}\\
\sum_{i=0}^{n-1} C(B C)^{i} A^{2 n-2 i-1} & (C B)^{n}
\end{array}\right],
$$

where $\Sigma_{i}^{j}=0$ if $i>j$.
Now consider the first sum in 13. Obviously,

$$
\begin{align*}
Q^{\pi}\left(I+Q P_{d}\right) P_{d} & =\left[\begin{array}{ll}
X A & (B C)_{d} B \\
D^{\pi} D C X^{2} A+D^{\pi} C X & D^{\pi} D(C B)_{d}
\end{array}\right] \\
Q^{\pi} Q^{2 n}\left(I+Q P_{d}\right) & =\left[\begin{array}{ll}
0 & 0 \\
D^{\pi} D^{2 n+1} C X & D^{\pi} D^{2 n}
\end{array}\right] . \tag{14}
\end{align*}
$$

By (13) and (14), for every integer $n \geq 1$,

$$
\begin{aligned}
& Q^{\pi} Q^{2 n}\left(I+Q P_{d}\right) P_{d}^{2 n+1} \\
&= {\left[\begin{array}{ll}
0 & 0 \\
D^{\pi} D^{2 n+1} C X^{2} A_{d}^{2 n-1}+D^{\pi} D^{2 n} C X^{2} A_{d}^{2 n-1} A & D^{\pi} D^{2 n+1}(C B)_{d}^{n+1}
\end{array}\right] } \\
&+\left[\begin{array}{cc}
0 & \\
-D^{\pi} D^{2 n+1} C X \sum_{i=1}^{n-1}(B C)_{d}^{i} A_{d}^{2 n+1-2 i} \\
0 \\
- & D^{\pi} D^{2 n} \sum_{i=1}^{n-1} C(B C)_{d}^{i+1} A_{d}^{2 n-2 i} \\
0
\end{array}\right] \\
&+\left[\begin{array}{lll}
0 & 0 \\
D^{\pi} D^{2 n+1} C X(B C)_{d}^{n} B C X^{2} A+D^{\pi} D^{2 n} C(B C)_{d}^{n} X & 0
\end{array}\right] \\
&\left.\begin{array}{ll}
0 & 0
\end{array}\right] \\
&+\left[\begin{array}{ll}
0 & 0 \\
D^{\pi} D^{2 n+1} C(B C)_{d}^{n} X^{2} A+D^{\pi} D^{2 n} C(B C)_{d}^{n} X & D^{\pi} D^{2 n+1}(C B)_{d}^{n+1}
\end{array}\right],
\end{aligned}
$$

where $L(n)$ is defined in (12).

Hence the first sum in 13 is

$$
\begin{align*}
& {\left[\begin{array}{ll}
X A & (B C)_{d} B \\
D^{\pi} D C X^{2} A+D^{\pi} C X & D^{\pi} D(C B)_{d}
\end{array}\right]} \\
& +\sum_{n=1}^{\left\lceil\frac{t}{2}\right]-1}\left[\begin{array}{ll}
0 & 0 \\
L(n)+D L(n) A_{d} & 0
\end{array}\right] \\
& +\sum_{n=1}^{\left\lceil\frac{t}{2}\right\rceil-1}\left[D^{\pi} D^{2 n+1} C(B C)_{d}^{n} X^{2} A+D^{\pi} D^{2 n} C(B C)_{d}^{n} X\right. \\
& \left.\begin{array}{c}
0 \\
D^{\pi} D^{2 n+1}(C B)_{d}^{n+1}
\end{array}\right] \\
& =\sum_{n=0}^{\left\lceil\frac{t}{2}\right\rceil-1}\left[D^{\pi} D^{2 n+1} C(B C)_{d}^{n} X^{2} A+D^{\pi} D^{2 n} C(B C)_{d}^{n} X\right. \\
& \left.\begin{array}{c}
0 \\
D^{\pi} D^{2 n+1}(C B)_{d}^{n+1}
\end{array}\right] \\
& +\sum_{n=1}^{\left\lceil\frac{t}{2}\right\rceil-1}\left[\begin{array}{ll}
0 & 0 \\
L(n)+D L(n) A_{d} & 0
\end{array}\right] \\
& +\left[\begin{array}{ll}
X A & (B C)_{d} B \\
0 & 0
\end{array}\right] . \tag{18}
\end{align*}
$$

Next consider the second sum in (13). For every integer $n \geq 0$,

$$
=\begin{gathered}
Q_{d}^{2 n+1}\left(I+Q_{d} P\right) P^{\pi} \\
=\left[\begin{array}{c}
0 \\
D_{d}^{2 n+2} C A^{\pi}-D_{d}^{2 n+2} C B C X-D_{d}^{2 n+1} C X A \\
0 \\
D_{d}^{2 n+1}(C B)^{\pi}
\end{array}\right]
\end{gathered}
$$

For every integer $n \geq 1$, since $P P_{d}=P_{d} P$ implies
$(B C)^{\pi}-X A^{2}=A^{\pi}-B C X$, we have

$$
\begin{aligned}
& Q_{d}^{2 n+1}\left(I+Q_{d} P\right) P^{2 n} P^{\pi} \\
= & {\left[\begin{array}{c}
0 \\
D_{d}^{2 n+2} C A^{\pi} A^{2 n}
\end{array}\right.}
\end{aligned}
$$

$$
\begin{array}{cc}
0 & \left.\begin{array}{cc}
0 \\
+D_{d}^{2 n+2} C \sum_{i=1}^{n}(B C)^{i} A^{2 n-2 i} & 0
\end{array}\right]
\end{array}
$$

$$
+\left[\begin{array}{c}
0 \\
-D_{d}^{2 n+2} C B C X A^{2 n}
\end{array}\right.
$$

$$
\left.\begin{array}{ccc}
0 & D_{d}^{2 n+2} C(B C)_{d} \sum_{i=1}^{n}(B C)^{i+1} A^{2 n-2 i} & 0
\end{array}\right]
$$

$$
+\left[\begin{array}{c}
0 \\
D_{d}^{2 n+1}(C B)^{\pi} \sum_{i=0}^{n-1} C(B C)^{i} A^{2 n-2 i-1}
\end{array}\right.
$$

$$
\left.\begin{array}{cc}
0 & \\
-D_{d}^{2 n+1} C X A^{2 n+1} & D_{d}^{2 n+1}(C B)^{\pi}(C B)^{n}
\end{array}\right]
$$

$$
=\left[\begin{array}{c}
0 \\
D_{d}^{2 n+2} C(B C)^{\pi} A^{2 n}-D_{d}^{2 n+2} C X A^{2 n+2}
\end{array}\right.
$$

$$
\left.\begin{array}{cc}
0 & D_{d}^{2 n+2} C(B C)^{\pi} \sum_{i=1}^{n}(B C)^{i} A^{2 n-2 i}
\end{array}\right]
$$

$$
+\left[\begin{array}{ll}
0 & 0 \\
H(n) & D_{d}^{2 n+1}(C B)^{\pi}(C B)^{n}
\end{array}\right]
$$

$$
=\left[\begin{array}{ll}
0 & 0 \\
H(n)+D_{d} H(n) A & 0
\end{array}\right]
$$

$$
+\left[\begin{array}{ll}
0 & 0 \\
D_{d}^{2 n+2} C(B C)^{\pi}(B C)^{n} & D_{d}^{2 n+1}(C B)^{\pi}(C B)^{n}
\end{array}\right]
$$

where $H(n)$ is defined in (12).
Hence the second sum in 13) is

$$
\begin{align*}
& \sum_{n=0}^{\left\lceil\frac{k}{2}\right]-1}\left[\begin{array}{ll}
0 & 0 \\
H(n)+D_{d} H(n) A & 0
\end{array}\right] \\
& +\sum_{n=0}^{\left[\frac{k}{2}\right\rceil-1}\left[\begin{array}{ll}
0 & 0 \\
D_{d}^{2 n+2} C(B C)^{\pi}(B C)^{n} & D_{d}^{2 n+1}(C B)^{\pi}(C B)^{n}
\end{array}\right] \\
& +\left[\begin{array}{ll}
0 & 0 \\
D_{d}^{2} C A^{\pi}-D_{d}^{2} C B C X-D_{d} C X A & D_{d}(C B)^{\pi}
\end{array}\right],(1 \tag{19}
\end{align*}
$$

where $k=\operatorname{Ind}(A)+2 \operatorname{Ind}(B C)+1$.
As a result, putting (18) and (19) into (13) yields M_{d}. The proof is complete.

Since

$$
\left[\begin{array}{ll}
A & B \tag{20}\\
C & D
\end{array}\right]=\left[\begin{array}{cc}
0 & I_{n} \\
I_{m} & 0
\end{array}\right]\left[\begin{array}{cc}
D & C \\
B & A
\end{array}\right]\left[\begin{array}{cc}
0 & I_{m} \\
I_{n} & 0
\end{array}\right]
$$

we can obtain the following result, applying Theorem 2 to $\left[\begin{array}{ll}D & C \\ B & A\end{array}\right]$.
Remark 3. Let M be a matrix of the form (1). If $D C=0$ and $C A=0$, then we can get another representation for the Drazin inverse by Theorem 2 .

In the rest of the paper we will exploit Theorem 1 or Corollary 2 to obtain some representation of M_{d} under some weaker conditions. Firstly we will present the following result.

Theorem 3. Let M be a matrix of the form (1). If $A A^{\pi} B=0$, $D D^{\pi} C=0, C A_{d}=0$ and $B D_{d}=0$, then

$$
M_{d}=\left[\begin{array}{ll}
A_{d}+A^{\pi} X A+L & A^{\pi} B Y+N \tag{21}\\
D^{\pi} C X+\widetilde{N} & D_{d}+D^{\pi} Y D+\widetilde{L}
\end{array}\right]
$$

where $s=\operatorname{Ind}(A), t=\operatorname{Ind}(D), p=\operatorname{Ind}(B C), k=s+t+2 p+1$, and

$$
\begin{align*}
L= & \sum_{n=0}^{k-1} A_{d}^{2 n+1}\left[B C\left(S(n)-X A^{2 n}\right)\right. \\
& \left.+A_{d} B C\left(S(n)-X A^{2 n}\right) A\right], \\
\widetilde{L}= & \sum_{n=0}^{k-1} D_{d}^{2 n+1}\left[C B\left(\widetilde{S}(n)-Y D^{2 n}\right)\right. \\
& \left.+D_{d} C B\left(\widetilde{S}(n)-Y D^{2 n}\right) D\right], \\
N= & \sum_{n=0}^{k-1} A_{d}^{2 n+1}\left[B\left(\widetilde{S}(n)-Y D^{2 n}\right) D\right. \\
& \left.+A_{d} B C B\left(\widetilde{S}(n)-Y D^{2 n}\right)+A_{d} B D^{2 n}\right], \\
\widetilde{N}= & \sum_{n=0}^{k-1} D_{d}^{2 n+1}\left[C\left(Z-X A^{2 n}\right) A\right. \\
& \left.+D_{d} C B C\left(Z-X A^{2 n}\right)+D_{d} C A^{2 n}\right], \tag{22}\\
X= & \sum_{i=0}^{\Gamma \frac{s}{2} 7-1}(B C)_{d}^{i+1} A^{2 i}, \quad Y=\sum_{i=0}^{\Gamma \frac{1}{2} 7-1}(C B)_{d}^{i+1} D^{2 i}, \\
S(n)= & \sum_{i=0}^{n-1}(B C)^{\pi}(B C)^{i} A^{2 n-2 i-2}, \\
S(n)= & \sum_{i=0}^{n-1}(C B)^{\pi}(C B)^{i} D^{2 n-2 i-2} .
\end{align*}
$$

Proof. Let $M=P+Q$, where

$$
P=\left[\begin{array}{ll}
A A^{\pi} & B \\
C & D D^{\pi}
\end{array}\right], \quad Q=\left[\begin{array}{ll}
A^{2} A_{d} & 0 \\
0 & D^{2} D_{d}
\end{array}\right] .
$$

Clearly, $P Q=0$. By Lemma 5, we have

$$
Q_{d}=\left[\begin{array}{ll}
A_{d} & 0 \\
0 & D_{d}
\end{array}\right] \text { and } Q^{\pi}=\left[\begin{array}{ll}
A^{\pi} & 0 \\
0 & D^{\pi}
\end{array}\right] .
$$

Apparently

$$
Q_{d}^{n}=\left[\begin{array}{ll}
A_{d}^{n} & 0 \\
0 & D_{d}^{n}
\end{array}\right], \text { for } n \geq 1, \text { and } Q Q^{\pi}=0
$$

Since $A A^{\pi} B=0$ and $D D^{\pi} C=0$, by Theorem 1 ,

$$
P_{d}=\left[\begin{array}{ll}
X A A^{\pi} & B Y \\
C X & Y D D^{\pi}
\end{array}\right]=\left[\begin{array}{ll}
X A & B Y \\
C X & Y D
\end{array}\right]
$$

where $X=\sum_{i=0}^{\left[\frac{s}{2}\right]-1}(B C)_{d}^{i+1} A^{2 i}$ and $Y=\sum_{i=0}^{\left[\frac{1}{2}\right]-1}(C B)_{d}^{i+1} D^{2 i}$ (by Lemma 5 and $C A_{d}=0$ and $B D_{d}=0$), and $k=s+t+2 p+1$ by Remark 2 And therefore $A A^{\pi} X=0$ and $D D^{\pi} Y=0$. From this, we have

$$
P^{\pi}=\left[\begin{array}{ll}
I-B C X & -B Y D \\
-C X A & I-C B Y
\end{array}\right]
$$

Moreover, we have, for $n \geq 1$,

$$
P^{2 n}=\left[\begin{array}{ll}
\sum_{i=0}^{n}(B C)^{i} A^{2 n-2 i} A^{\pi} & \sum_{i=0}^{n-1} B(C B)^{i} D^{2 n-2 i-1} \\
\sum_{i=0}^{n-1} C(B C)^{i} A^{2 n-2 i-1} & \sum_{i=0}^{n}(C B)^{i} D^{2 n-2 i} D^{\pi}
\end{array}\right],
$$

Since $C A_{d}=0$ and $B D_{d}=0$, we obtain $P Q=0$. Using Lemma 3. we get

$$
\begin{aligned}
& M_{d}=(P+Q)_{d}=Q^{\pi} P_{d}+Q_{d}\left(I+Q_{d} P\right) P^{\pi} \\
& +\sum_{n=1}^{k-1} Q_{d}^{2 n+1}\left(I+Q_{d} P\right) P^{2 n} P^{\pi} .
\end{aligned}
$$

Clearly,

$$
\begin{align*}
Q^{\pi} P_{d} & =\left[\begin{array}{ll}
A^{\pi} X A & A^{\pi} B Y \\
D^{\pi} C X & D^{\pi} Y D
\end{array}\right] . \tag{23}\\
I+Q_{d} P & =\left[\begin{array}{ll}
I & A_{d} B \\
D_{d} C & I
\end{array}\right] .
\end{align*}
$$

For $n \geq 0$,

$$
\left.\begin{array}{rl}
& Q_{d}^{2 n+1}\left(I+Q_{d} P\right) P^{\pi} \\
= & {\left[\begin{array}{cc}
A_{d}^{2 n+1} & A_{d}^{2 n+2} B \\
D_{d}^{2 n+2} C & D_{d}^{2 n+1}
\end{array}\right]\left[\begin{array}{ll}
I-B C X & -B Y D \\
-C X A & I-C B Y
\end{array}\right]} \\
= & {\left[\begin{array}{c}
A_{d}^{2 n+1}-A_{d}^{2 n+1} B C X-A_{d}^{2 n+2} B C X A \\
D_{d}^{2 n+2} C-D_{d}^{2 n+2} C B C X-D_{d}^{2 n+1} C X A
\end{array}\right.} \\
& \quad A_{d}^{2 n+2} B-A_{d}^{2 n+2} B C B Y-A_{d}^{2 n+1} B Y D \\
\quad D_{d}^{2 n+1}-D_{d}^{2 n+1} C B Y-D_{d}^{2 n+2} C B Y D
\end{array}\right](\text { (24) })
$$

Since $B D^{k} C=B D^{\pi} D^{k} C=0$ and $C A^{k} B=C A^{\pi} A^{k} B=0$ for
$k \geq 1$, we have, for $n \geq 1$,

$$
\begin{aligned}
& Q_{d}^{2 n+1}\left(I+Q_{d} P\right) P^{\pi} P^{2 n} \\
= & \sum_{i=0}^{n-1}\left[\begin{array}{c}
A_{d}^{2 n+1}(B C)^{i+1}(B C)^{\pi} A^{2 n-2 i-2} \\
D_{d}^{2 n+2} C(B C)^{i+1}(B C)^{\pi} A^{2 n-2 i-2} \\
A_{d}^{2 n+1} B(C B)^{i}(C B)^{\pi} D^{2 n-2 i-1} \\
D_{d}^{2 n+2}(C B)^{i+1}(C B)^{\pi} D^{2 n-2 i-1}
\end{array}\right] \\
& +\sum_{i=0}^{n-1}\left[\begin{array}{c}
A_{d}^{2 n+2}(B C)^{i+1}(B C)^{\pi} A^{2 n-2 i-1} \\
D_{d}^{2 n+1} C(B C)^{i}(B C)^{\pi} A^{2 n-2 i-1} \\
A_{d}^{2 n+2} B(C B)^{i+1}(C B)^{\pi} D^{2 n-2 i-2} \\
D_{d}^{2 n+1}(C B)^{i+1}(C B)^{\pi} D^{2 n-2 i-2}
\end{array}\right] \\
= & -\left[\begin{array}{c}
A_{d}^{2 n+1} B C X A^{2 n} \\
D_{d}^{2 n+2}(C B C X-C) A^{2 n} \\
A_{d}^{2 n+1} B Y D_{d}^{2 n+1} C B Y D^{2 n+1}
\end{array}\right] \\
& -\left[\begin{array}{c}
A_{d}^{2 n+2} B C X A^{2 n+1} \\
D_{d}^{2 n+1} C X A^{2 n+1} \\
A_{d}^{2 n+2}(B C B Y-B) D_{d}^{2 n} C B Y D^{2 n} \\
D_{d}^{2 n+1}\left(B C S(n)+A_{d} B C S(n) A\right) \\
D_{d}^{2 n+1}\left(D_{d} C B C S(n)+C S(n) A\right) \\
A_{d}^{2 n+1}\left(A_{d} B C B \widetilde{S}(n)+B \widetilde{S}(n) D\right) \\
D_{d}^{2 n+1}\left(C B \widetilde{S}(n)+D_{d} C B \widetilde{S}(n) D\right)
\end{array}\right] \\
& -\left[\begin{array}{c}
A_{d}^{2 n+1}\left(B C X+A_{d} B C X A\right) A^{2 n} \\
D_{d}^{2 n+1}\left[C X A+D_{d}(C B C X-C)\right] A^{2 n} \\
A_{d}^{2 n+1}\left[B Y D+A_{d}(B C B Y-B)\right] D^{2 n} \\
D_{d}^{2 n+1}\left(C B Y+D_{d} C B Y D\right) D^{2 n}
\end{array}\right],
\end{aligned}
$$

where $S(n)$ and $\widetilde{S}(n)$ are defined in (22).
By (24,

$$
\begin{align*}
& \sum_{n=0}^{k-1} Q_{d}^{2 n+1}\left(I+Q_{d} P\right) P^{\pi} P^{2 n} \\
= & \sum_{n=1}^{k-1}\left[\begin{array}{ll}
A_{d}^{2 n+1}\left(B C S(n)+A_{d} B C S(n) A\right) \\
D_{d}^{2 n+1}\left(D_{d} C B C S(n)+C S(n) A\right) \\
A_{d}^{2 n+1}\left(A_{d} B C B \widetilde{S}(n)+B \widetilde{S}(n) D\right) \\
D_{d}^{2 n+1}\left(C B \widetilde{S}(n)+D_{d} C B \widetilde{S}(n) D\right)
\end{array}\right] \\
= & {\left[\begin{array}{ll}
A_{d}+L & N \\
\widetilde{N} & D_{d}+\widetilde{L}
\end{array}\right], }
\end{align*}
$$

where N, \widetilde{N}, L and \widetilde{L} are defined in (22).
From (23) and (25), (21) follows.
The next result is a generalization of (Deng \& Wei, 2009, Theorem 3.8).

Theorem 4. Let M be matrix of a form (1). If $A A^{\pi} B=0$, $B C\left(I-A^{\pi}\right)=0$ and $D C=0$, then
$M_{d}=\left[\begin{array}{ll}T & \widetilde{T} \\ C A_{d} T+C A^{\pi} X-C A_{d} X A & C A_{d} \widetilde{T}+Y D-C A_{d} B Y\end{array}\right]$,
where $k=s+t+2 p+1, s=\operatorname{Ind}(A), t=\operatorname{Ind}(D), p=\operatorname{Ind}(B C)$, $q=\operatorname{Ind}\left(C A^{\pi} B\right)$, and

$$
\begin{aligned}
T= & A^{\pi} X A+A_{d}+\sum_{n=0}^{\left\lceil\frac{k}{2}\right]-1}(G(n)-J(n)), \\
\widetilde{T}= & A^{\pi} B Y+\sum_{n=0}^{\left\lceil\frac{k}{2}\right]-1}(H(n)-K(n)), \\
G(n)= & \sum_{i=0}^{n-1} A_{d}^{2 n+1}\left[(B C)^{i+1}+A_{d}(B C)^{i+1} A\right] A^{2 n-2 i-2}, \\
H(n)= & A_{d}^{2 n+2} B(C B)^{n} D^{\pi} \\
& +\sum_{i=0}^{n-1} A_{d}^{2 n+1}\left[B(C B)^{i}+A_{d} B(C B)^{i} D\right] D^{2 n-2 i-1} D^{\pi}, \\
J(n)= & A_{d}^{2 n+1}(B C)^{n+1} X+A_{d}^{2 n+2}(B C)^{n+1} X A, \\
K(n)= & A_{d}^{2 n+1} B(C B)^{n} Y D+A_{d}^{2 n+2} B(C B)^{n+1} Y, \\
X= & \sum_{i=0}^{\frac{s}{2} 7-1}(B C)_{d}^{i+1} A^{2 i}, \\
Y= & \left(C A^{\pi} B\right)^{\pi} \sum_{i=0}^{q-1}\left(C A^{\pi} B\right)^{i} D_{d}^{2 i+2}+\sum_{i=0}^{\Gamma_{2}^{2} 7-1}\left(C A^{\pi} B\right)_{d}^{i+1} D^{2 i} D^{\pi} .
\end{aligned}
$$

Proof. Split matrix M as $M=P+Q$, where

$$
P=\left[\begin{array}{ll}
A A^{\pi} & B \\
C A^{\pi} & D
\end{array}\right] \text { and } Q=\left[\begin{array}{ll}
A^{2} A_{d} & 0 \\
C A A_{d} & 0
\end{array}\right] .
$$

From Lemma 1 and Lemma 5, we have, for every integer $n \geq 1$,

$$
Q_{d}^{n}=\left[\begin{array}{ll}
A_{d}^{n} & 0 \\
C A_{d}^{n+1} & 0
\end{array}\right]
$$

and then

$$
Q^{\pi}=\left[\begin{array}{ll}
A^{\pi} & 0 \\
-C A_{d} & I
\end{array}\right] \text { and } Q^{\pi} Q=0
$$

Since $P Q=0$,

$$
\begin{equation*}
M_{d}=(P+Q)_{d}=Q^{\pi} P_{d}+\sum_{i=0}^{\left\lceil\frac{k}{2}\right\rceil-1} Q_{d}^{2 i+1}\left(I+Q_{d} P\right) P^{2 i} P^{\pi} \tag{27}
\end{equation*}
$$

where $k \geq \operatorname{Ind}(P)$, by Lemma 3 .
Since $A A^{\pi} B=0$ and $D C A^{\pi}=0$ in P, we get, by Theorem 1.

$$
P_{d}=\left[\begin{array}{ll}
X A A^{\pi} & B Y \\
C A^{\pi} X & Y D
\end{array}\right],
$$

where

$$
\begin{aligned}
X= & \left(B C A^{\pi}\right)^{\pi} \sum_{i=0}^{p-1}\left(B C A^{\pi}\right)^{i}\left(A A^{\pi}\right)_{d}^{2 i+2} \\
& +\sum_{i=0}^{\left\lceil\frac{s}{2}\right\rceil-1}\left(B C A^{\pi}\right)_{d}^{i+1}\left(A A^{\pi}\right)^{2 i}\left(A A^{\pi}\right)^{\pi} \\
= & \sum_{i=0}^{\left\lceil\frac{s}{2}\right\rceil-1}(B C)_{d}^{i+1} A^{2 i}\left(\text { by Lemma 5 and } B C\left(I-A^{\pi}\right)=0\right) \\
Y= & \left(C A^{\pi} B\right)^{\pi} \sum_{i=0}^{q-1}\left(C A^{\pi} B\right)^{i} D_{d}^{2 i+2}+\sum_{i=0}^{\left\lceil\frac{t}{2}\right\rceil-1}\left(C A^{\pi} B\right)_{d}^{i+1} D^{2 i} D^{\pi}
\end{aligned}
$$

and $s=\operatorname{Ind}\left(A A^{\pi}\right)=\operatorname{Ind}(A), t=\operatorname{Ind}(D), p=\operatorname{Ind}\left(B C A^{\pi}\right)=$ $\operatorname{Ind}(B C), q=\operatorname{Ind}\left(C A^{\pi} B\right) \leq p+1$, and, by Remark 2 (ii), $\operatorname{Ind}(P) \leq s+t+2 p+1$.

Note that $X A^{\pi}=X$. Then

$$
P_{d}=\left[\begin{array}{ll}
X A & B Y \\
C A^{\pi} X & Y D
\end{array}\right]
$$

Since $A A^{\pi} B=0$ and $D C=0, A A^{\pi}(B C)_{d}=0$ and $D\left(C A^{\pi} B\right)_{d}=0$ and therefore $A A^{\pi} X=0$ and $D Y=D_{d}$. Thus

$$
\begin{aligned}
& P^{\pi} \\
= & I-\left[\begin{array}{cc}
A A^{\pi} & B \\
C A^{\pi} & D
\end{array}\right]\left[\begin{array}{cc}
X A & B Y \\
C A^{\pi} X & Y D
\end{array}\right] \\
= & {\left[\begin{array}{cc}
I-B C X & -B Y D \\
-C A^{\pi} X A & D^{\pi}-C A^{\pi} B Y
\end{array}\right] . }
\end{aligned}
$$

For every integer $n \geq 0$,

$$
\begin{align*}
Q_{d}^{2 n+1}\left(I+Q_{d} P\right) & =Q_{d}^{2 n+1}\left[\begin{array}{cc}
I & A_{d} B \\
0 & I+C A_{d}^{2} B
\end{array}\right] \\
& =\left[\begin{array}{cc}
A_{d}^{2 n+1} & A_{d}^{2 n+2} B \\
C A_{d}^{2 n+2} & C A_{d}^{2 n+3} B
\end{array}\right] . \tag{28}
\end{align*}
$$

Note that

$$
P^{2}=\left[\begin{array}{cc}
A^{2} A^{\pi}+B C A^{\pi} & B D \\
C A A^{\pi} & C A^{\pi} B+D^{2}
\end{array}\right]
$$

We can prove, for every integer $n \geq 1$,

$$
P^{2 n}=\left[\begin{array}{ll}
\sum_{i=0}^{n}(B C)^{i} A^{2 n-2 i} A^{\pi} & \sum_{i=0}^{n-1} B(C B)^{i} D^{2 n-2 i-1} \\
\sum_{i=0}^{n-1} C A^{\pi}(B C)^{i} A^{2 n-2 i-1} & \sum_{i=0}^{n}\left(C A^{\pi} B\right)^{i} D^{2 n-2 i}
\end{array}\right]
$$

by induction on n. By (28), for every integer $n \geq 1$,

$$
\begin{aligned}
& Q_{d}^{2 n+1}\left(I+Q_{d} P\right) P^{2 n} \\
= & \sum_{i=0}^{n-1}\left[\begin{array}{c}
A_{d}^{2 n+1}\left[(B C)^{i+1}+A_{d}(B C)^{i+1} A\right] A^{2 n-2 i-2} \\
C A_{d}^{2 n+2}\left[(B C)^{i+1}+A_{d}(B C)^{i+1} A\right] A^{2 n-2 i-2} \\
A_{d}^{2 n+1}\left[B(C B)^{i}+A_{d} B(C B)^{i} D\right] D^{2 n-2 i-1} \\
C A_{d}^{2 n+2}\left[B(C B)^{i}+A_{d} B(C B)^{i} D\right] D^{2 n-2 i-1}
\end{array}\right] \\
= & +\left[\begin{array}{cc}
0 & A_{d}^{2 n+2} B(C B)^{n} \\
0 & C A_{d}^{2 n+3} B(C B)^{n}
\end{array}\right] \\
& {\left[\begin{array}{ll}
G(n) & \bar{H}(n) \\
C A_{d} G(n) & C A_{d} \bar{H}(n)
\end{array}\right], }
\end{aligned}
$$

where

$$
\begin{aligned}
\bar{H}(n)= & A_{d}^{2 n+2} B(C B)^{n} \\
& +\sum_{i=0}^{n-1} A_{d}^{2 n+1}\left[B(C B)^{i}+A_{d} B(C B)^{i} D\right] D^{2 n-2 i-1} .
\end{aligned}
$$

Note that $\bar{H}(n) C=A_{d}^{2 n+2}(B C)^{n+1}$. Since $B C A B C=$ $B C A^{\pi} A B=0, G(n) B=A_{d}^{2 n+1}(B C)^{n} B$ for $n \geq 1$, we have

$$
\begin{aligned}
& Q_{d}^{2 n+1}\left(I+Q_{d} P\right) P^{2 n} P^{\pi} \\
= & {\left[\begin{array}{cc}
G(n)(I-B C X)-A_{d}^{2 n+2}(B C)^{n+1} X A & \bar{H}(n) D^{\pi} \\
C A_{d} G(n)(I-B C X)-C A_{d}^{2 n+3}(B C)^{n+1} X A & C A_{d} \bar{H}(n) D^{\pi} \\
-A_{d}^{2 n+2}(B C)^{n+1} B Y-G(n) B Y D
\end{array}\right] } \\
= & {\left[\begin{array}{ll}
G(n) & \bar{H}(n) D^{\pi} \\
C A_{d} G(n) & C A_{d} \bar{H}(n) D^{\pi}
\end{array}\right] } \\
& -\left[\begin{array}{ll}
A_{d}^{2 n+1}(B C)^{n+1} X+A_{d}^{2 n+2}(B C)^{n+1} X A \\
A_{d}^{2 n+1}(B C)^{n} B Y D+A_{d}^{2 n+2}(B C)^{n+1} B Y \\
C A_{d}^{2 n+2}(B C)^{n+1} X+C A_{d}^{2 n+3}(B C)^{n+1} X A \\
= & {\left[\begin{array}{ll}
G(n) & H(n) \\
C A_{d} G(n) & C A_{d} H(n)
\end{array}\right]-\left[\begin{array}{ll}
J(n) & K(n) \\
C A_{d} J(n) & C A_{d} K(n)
\end{array}\right] .}
\end{array}\right.
\end{aligned}
$$

Also, by 28 and $G(0)=0$ and $H(0)=A_{d}^{2} B D^{\pi}$,

$$
\begin{aligned}
& Q_{d}\left(I+Q_{d} P\right) P^{\pi} \\
= & {\left[\begin{array}{c}
A_{d}(I-B C X)-A_{d}^{2} B C X A \\
C A_{d}^{2}(I-B C X)-C A_{d}^{3} B C X A
\end{array}\right.}
\end{aligned}
$$

$$
\left.\begin{array}{c}
A_{d}^{2} B\left(D^{\pi}-C B Y\right)-A_{d} B Y D \\
C A_{d}^{3} B\left(D^{\pi}-C B Y\right)-C A_{d}^{2} B Y D
\end{array}\right]
$$

$$
=\left[\begin{array}{ll}
A_{d} & 0 \\
C A_{d}^{2} & 0
\end{array}\right]+\left[\begin{array}{ll}
G(0) & H(0) \\
C A_{d} G(0) & C A_{d} H(0)
\end{array}\right]
$$

$$
-\left[\begin{array}{ll}
J(0) & K(0) \\
C A_{d} J(0) & C A_{d} K(0)
\end{array}\right]
$$

$Q^{\pi} P_{d}=\left[\begin{array}{ll}A^{\pi} X A & A^{\pi} B Y \\ C A^{\pi} X-C A_{d} X A & Y D-C A_{d} B Y\end{array}\right]$.
The proof is complete.

Using (20) and Theorem 4, we have the following result.
Remark 4. Let M be matrix of a form (1). If $D D^{\pi} C=0$, $C B\left(I-D^{\pi}\right)=0$ and $A B=0$, then then we can get another representation for the Drazin inverse by Theorem 4 .

The last result is gained by utilizing Corollary 2
Theorem 5. Let M be matrix of a form (1). If $A A^{\pi} B=0$, $D_{d} C=0, C A_{d}=0$ and $B D^{\pi}=0$, then

$$
M_{d}=\left[\begin{array}{ll}
A_{d} & -A_{d} B D_{d}+A^{\pi} B D_{d}^{2} \tag{29}\\
0 & D_{d}+\sum_{n=0}^{t} D^{n} C B D_{d}^{n+3}
\end{array}\right]
$$

where $t=\operatorname{Ind}(D)$.
Proof. Let $M=P+Q$, where

$$
P=\left[\begin{array}{ll}
A A^{\pi} & B \\
C & D^{2} D_{d}
\end{array}\right], \quad Q=\left[\begin{array}{ll}
A^{2} A_{d} & 0 \\
0 & D D^{\pi}
\end{array}\right] .
$$

Thus

$$
\begin{aligned}
P^{n} & =\left[\begin{array}{ll}
A^{n} A^{\pi} & B D^{n-1} \\
C A^{n-1} A^{\pi} & C B D^{n-2}+D^{n+1} D_{d}
\end{array}\right], n \geq 2,(30) \\
Q^{n} & =\left[\begin{array}{ll}
A^{n+1} A_{d} & 0 \\
0 & D^{n} D^{\pi}
\end{array}\right], n \geq 1
\end{aligned}
$$

where $\operatorname{Ind}(Q) \leq \operatorname{Ind}\left(A^{2} A_{d}\right)+\operatorname{Ind}\left(D D^{\pi}\right)=1+t$ by Lemma 1 and Lemma 5

By Lemma2, we have

$$
\begin{gathered}
Q_{d}=\left[\begin{array}{ll}
A_{d} & 0 \\
0 & 0
\end{array}\right], \quad Q^{\pi}=\left[\begin{array}{ll}
A^{\pi} & 0 \\
0 & I
\end{array}\right], \\
Q^{\pi} Q^{n}=\left[\begin{array}{ll}
0 & 0 \\
0 & D^{n} D^{\pi}
\end{array}\right],
\end{gathered}
$$

$n \geq 1$.
Since $B D^{\pi}=0$ and $D D_{d} C=0$ imply $B D^{j} C=$ $B D^{j+1} D_{d} C=0$ for $j \geq 0, P$ satisfies the conditions of Corollary 2 (i). Then, by Corollary 2 i) and Lemma 5 .

$$
P_{d}=\left[\begin{array}{ll}
0 & B D_{d}^{2} \\
0 & D_{d}+C B D_{d}^{3}
\end{array}\right], P_{d}^{n}=\left[\begin{array}{ll}
0 & B D_{d}^{n+1} \\
0 & D_{d}^{n}+C B D_{d}^{n+2}
\end{array}\right]
$$

$n \geq 1$,

$$
P^{\pi}=\left[\begin{array}{ll}
I & -B D_{d} \\
0 & D^{\pi}-C B D_{d}^{2}
\end{array}\right]
$$

and

$$
P^{n} P^{\pi}=\left\{\begin{array}{ll}
{\left[\begin{array}{ll}
A A^{\pi} & 0 \\
C & -C B D_{d}
\end{array}\right],} & n=1 \\
A^{n} A^{\pi} & 0 \\
C A^{n-1} A^{\pi} & 0
\end{array}\right], \quad n \geq 2
$$

Thus $Q_{d} P^{n} P^{\pi}=0$ for $n \geq 1$.

Since $A A^{\pi} B=0, C A_{d}=0$ and $B D^{\pi}=0$, we obtain $P Q=0$. Therefore, by Lemma 3 , we get

$$
\begin{aligned}
M_{d}= & \sum_{n=0}^{(t+1)-1} Q^{\pi} Q^{n} P_{d}^{n+1}+Q_{d} P^{\pi} \\
= & {\left[\begin{array}{ll}
A^{\pi} & 0 \\
0 & I
\end{array}\right]\left[\begin{array}{ll}
0 & B D_{d}^{2} \\
0 & D_{d}+C B D_{d}^{3}
\end{array}\right] } \\
& +\sum_{n=1}^{t}\left[\begin{array}{ll}
0 & 0 \\
0 & D^{n} D^{\pi}
\end{array}\right]\left[\begin{array}{ll}
0 & B D_{d}^{n+2} \\
0 & D_{d}^{n+1}+C B D_{d}^{n+3}
\end{array}\right] \\
& +\left[\begin{array}{ll}
A_{d} & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
I & -B D_{d} \\
0 & D^{\pi}-C B D_{d}^{2}
\end{array}\right] \\
= & {\left[\begin{array}{ll}
0 & A^{\pi} B D_{d}^{2} \\
0 & D_{d}+C B D_{d}^{3}
\end{array}\right]+\sum_{n=1}^{t}\left[\begin{array}{ll}
0 & 0 \\
0 & D^{n} C B D_{d}^{n+3}
\end{array}\right] } \\
& +\left[\begin{array}{ll}
A_{d} & -A_{d} B D_{d} \\
0 & 0
\end{array}\right] .
\end{aligned}
$$

Hence we reach (29).

References

Ben-Israel, A., \& Greville, T. N. E. (1980). Generalized inverses: theory and applications. Robert E. Krieger Publishing Co., Inc., Huntington, N.Y. (Corrected reprint of the 1974 original)
Campbell, S. L. (1982). The Drazin inverse of an operator. In Recent applications of generalized inverses (Vol. 66, pp. 250260). Pitman, Boston, Mass.-London.

Campbell, S. L., \& Meyer, C. D., Jr. (1979). Generalized inverses of linear transformations (Vol. 4). Pitman (Advanced Publishing Program), Boston, Mass.-London.
Campbell, S. L., Meyer, C. D., Jr., \& Rose, N. J. (1976). Applications of the Drazin inverse to linear systems of differential equations with singular constant coefficients. SIAM J. Appl. Math., 31(3), 411-425. Retrieved fromhttps://doi.org/ 10.1137/0131035

Castro-González, N., Dopazo, E., \& Martí nez Serrano, M. F. (2009). On the Drazin inverse of the sum of two operators and its application to operator matrices. J. Math. Anal. Appl., 350(1), 207-215. Retrieved from https:// doi.org/10.1016/j.jmaa.2008.09.035
Catral, M., Olesky, D. D., \& van den Driessche, P. (2009). Block representations of the Drazin inverse of a bipartite matrix. Electron. J. Linear Algebra, 18, 98-107. Retrieved from https://doi.org/10.13001/1081-3810.1297
Cvetković-Ilić, D. S. (2008). A note on the representation for the Drazin inverse of 2×2 block matrices. Linear Algebra Appl., 429(1), 242-248. Retrieved from https:// doi.org/10.1016/j.laa.2008.02.019
Deng, C., \& Wei, Y. (2009). A note on the Drazin inverse of an anti-triangular matrix. Linear Algebra Appl., 431(10), 1910-1922. Retrieved from https://doi.org/10.1016/ j.laa.2009.06.030

Dopazo, E., \& Martí nez Serrano, M. F. (2010). Further results on the representation of the Drazin inverse of a 2×2 block
matrix. Linear Algebra Appl., 432(8), 1896-1904. Retrieved fromhttps://doi.org/10.1016/j.laa.2009.02.001
Drazin, M. P. (1958). Pseudo-inverses in associative rings and semigroups. Amer. Math. Monthly, 65, 506-514. Retrieved from https://doi.org/10.2307/2308576
Elliott, G. A., \& Zsidó, L. (1984). One-parameter automorphism groups of operator algebras allowing spectral projections. Ergodic Theory Dynam. Systems, 4(2), 187-212. Retrieved fromhttps://doi.org/10.1017/S0143385700002388
Hartwig, R. E., Hall, F. J., \& Katz, I. J. (1985). Block striped and block nested matrices. In Linear algebra and its role in systems theory (Brunswick, Maine, 1984) (Vol. 47, pp. 177201). Amer. Math. Soc., Providence, RI. Retrieved from https://doi.org/10.1090/conm/047/828301
Hartwig, R. E., Wang, G., \& Wei, Y. (2001). Some additive re-
sults on Drazin inverse. Linear Algebra Appl., 322(1-3), 207-217. Retrieved from https://doi.org/10.1016/ S0024-3795(00)00257-3
Meyer, C. D., Jr., \& Rose, N. J. (1977). The index and the Drazin inverse of block triangular matrices. SIAM J. Appl. Math., 33(1), 1-7. Retrieved from https://doi.org/10.1137/ 0133001
Piziak, R., \& Odell, P. L. (1999). Full Rank Factorization of Matrices. Math. Mag., 72(3), 193-201. Retrieved from http:// wWW.jstor.org/stable/2690882?origin=pubexport
Yang, H., \& Liu, X. (2011). The Drazin inverse of the sum of two matrices and its applications. J. Comput. Appl. Math., 235(5), 1412-1417. Retrieved from https://doi.org/ 10.1016/j.cam.2010.08.027

