
Tomographic Reconstruction of 2D
Images

By Bruno Guerrieri

Introduction:
We are all familiar with the idea of a doctor sending someone

to get a “catscan” or CT Scan.

Figures 1a, 1b, 1c

[35]
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The figures seen above (Figures 1a, 1b, 1c) found in [9] summa-
rize the process and, for purposes of simplicity, we will restrict our-
selves to 2D situations where only a “slice” of the object is analyzed
in any one scanning “run.” As intimated above, a CT (computed
tomography) scanner “surrounds” an object to be reconstructed in
the form of a useful image. Rays are emitted from the surrounding
periphery, sent through the object, and then detected by sensors
on the opposite side as Figure 1b suggests. The data received by
the sensors is then “integrated,” in ways which we will describe, to
reconstruct the object (Figure 1c) based on the absorption levels
undergone by the rays as they travel through the object. Notice
the spikes (sketched on the periphery of the figures) which are a
graphical visualization of the absorption levels in each direction.
The intensity of a particular ray as it is emitted is known and its
intensity upon arrival, after having traveled through the object, is
recorded by the sensor directly across from the original emitter.
The difference in the intensities is an indicator of the level of at-
tenuation experienced by the ray in question, and in our situation,
larger values correspond to greater attenuation due to the presence
of higher density material in the path of the ray. (In reality, ratios
rather than differences are considered, but our approach is suffi-
cient for our level of explanation). Emitter/Sensor pairs face each
other and form emitting/recording banks surrounding the object.

Our purpose here is to describe, in a very simple way, the math-
ematical process used to “reconstruct” a visual representation of the
2D object from the absorption measurements determined by the CT
scanner. The original idea for these remarks was found in [1] and
our goal is to generate a Maple worksheet that will interactively
implement a 2D “catscan” simulation in simple situations.

Consider Figure 2, descriptive of the simplest geometric situa-
tion possible:

Figures 2a Numerical data, and 2b Object reconstructed

On the left is the “result” of a 2D catscan. Rays emanating
from sensors below (southern border of the box) as well as on the
right (eastern border) are sent respectively upward and leftward
through an object (whose shape we are to deduce) and the nu-
merical values respectively on the northern and western borders of
the box (Figure 2a) are the measurements recorded (the higher the
value, the higher the attenuation). In Figure 2b, with the (dark)
object reconstructed from the data, we are able to understand what
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is taking place. Very simply, the numerical readings seen in Figure
2a indicate the number of black cells traveled through upward and
leftward respectively. The goal therefore is to devise an algorithm
which reconstructs the sequence of black cells seen at the right
from the numerical data seen on the left. The larger the number
of cells available, the finer the resolution and, therefore, the more
informative the final image is in terms of the internal constituents
of the object (Figure 1c). Notice that the values added along the
horizontal border give N = 2+2+2+2+1 = 9 and that we obtain
the same value of N = 9 when adding the values along the ver-
tical border. The number N represents the number of cells that
contribute to the attenuation of the rays and, more specifically,
indicates the number of cells to be shaded.

Simple Introduction to the Reconstruction Algorithm
(N = 1 case):

The overall idea behind our scheme is rather simple and, in
fact, suggested itself as a slight variant of the “cumulative” idea
presented in [2, 3]. Let us consider Figure 3 for purposes of illus-
tration:

Figures 3a Data, 3b Solution

Figure 3a shows the absorption readings on the northern and
western borders for a CT scan session, and Figure 3b shows the
reconstructed image of the object while Figure 4 indicates the re-
construction process. To “reconstruct” the object from the data,
let us proceed as follows:

Figures 4a Vertical smear and 4b Horizontal smear
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Step 1:
In the column with the numerical value 1 in the heading (Figure

4a), we evenly apportion that value through the entire column
which is made up of 6 rows. This means that we will “write
in” a 1/6 in every relevant box.

Step 2:
We then do the same in the horizontal direction (Figure 4b),

the key idea being that, as we proceed row-wise, we add the new
values to the pre-existing ones. This explains why the cell corre-
sponding to the center of the “cross” seen in Figure 4b receives a
value of 1/6+1/6 = 1/3. That cell was visited twice (as we recorded
1/6 each time), once vertically and once horizontally. We are also
using a shading process (with the intensity of the shading propor-
tional to the numerical value in the cell) for greater visual impact.
Each of the remaining gray areas has a lesser value of 1/6.

Step 3:
This last step in the reconstruction process is an overexpo-

sure/underexposure process where we first scan the matrix of frac-
tions, ranking the values in descending order. One piece of infor-
mation that we do have is the number N of cells that are supposed
to be darkened. In our simple example, we have only one, so we
let N = 1. It is the cell that stood in the way of the horizontal and
vertical rays giving a reading of 1 in the relevant row and column.
Note that N is simply obtained by adding all the values along the
northern border OR the eastern border but not both. Since there
is ultimately only one cell to be darkened, we locate within the grid
the cell with the maximal fractional value and change its density
level to 1. We then “zero out” all remaining cells, obtaining the
final result in Figure 3b).

Details of the Algorithm in the General Case (N > 1):

We have decided, for the sake of convenience, to implement the
process using the Maple environment [4]. Let the data presented
in Figure 5a be the numerical results of a CT scan session. Using
the simple idea presented in the previous paragraph, we take each
of the values on the top row and partition (“smear”) them down,
distributing equally the apportioned value in each cell of a given
column (Figure 5b). For instance, in the column with heading
3, a value of 3/8 is entered in each of the cells in that particular
column, since there are 8 rows.

Next, we duplicate the process described above, this time hori-
zontally, adding to the pre-existing values. So, for instance, in the
first row (below the header row) we consistently add a value of 1/8
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across each cell since the absorption value of 1 seen in the left-most
column is to be evenly apportioned horizontally across each of the
8 cells. We did not simplify the final values (Figure 6a) so one can
see the process at work.

Figures 5a Data, and 5b Reconstruction First Approximation

Figures 6 a Numerical distribution, and 6b Density plot

For better visual impact we shade each cell in proportion to
its numerical value. One may wish to stare at the density plot
(Figure 6b), perhaps “squinting” a bit to see if a recognizable pat-
tern emerges. This ad-hoc approach (squinting) probably lowers
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our eye resolution, bringing forth the main features while delet-
ing the nuances. To simulate this approach via the density plot,
we proceed as follows: recall that numerical values are present
inside each cell. Let us start with the higher number in sight,
change its value to a 1, go to the next lower one, also change it
to a 1, and keep this “descending” process going, entering a value
of 1 each time. For how long? Until we have shaded the cor-
rect number of cells! As mentioned earlier, this is a number that
we can obtain by summing up the initial data listed either along
a row or a column (Figure 5a). These two values will be iden-
tical. So, in our example, the number of cells to be “filled” is
N = 8+1+6+3+4+5+2+7 = 36 = 1+7+3+5+4+6+2+8.
Once the proper 36 cells have been identified, the remaining ones
are “zeroed out.” The density plot (black for a 1 and white for a
0) for our example is as follows (Figure 7):

Figure 7: Reconstruction Final Approximation

For “double-checking” purposes, we can add the number of
black cells row-wise and column-wise and compare these figures
with the original numerical data.

Problems Encountered and Solutions:

Perhaps the following question has come to mind: “Is it possi-
ble for two different 2D designs to generate the same numerical data
set?” The answer is “yes.” Figure 8 shows a very simple example
of a catastrophic case (a multi-valued situation in which a single
set of data values results from two different object configurations)
to use the terminology introduced in [1]:
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Figure 8: Catastrophic Case

It was expected that the simple method described above would,
at times, fail since its very deterministic nature does not have the
means to distinguish between competing alternatives. Consider
implementing the above algorithm on a piece of paper for the ex-
ample of Figure 8 and see your quandary when trying to determine
which 4 boxes to fully shade. To alleviate this problem, we may
decide to collect data from four pairs of opposing sides rather than
just two as shown above. The reconstruction process will involve
4 consecutive “smearing” steps (North-South, South-North, East-
West, West-East). This is the approach that we took in our Maple
application. Using this approach, one may consider increasing the
number of cells in both directions as an attempt to improve the
resolution. However, doing so increases the likelihood of the oc-
currence of catastrophic cases. This is understandable from a
common-sense point of view, since it is extremely unrealistic to ex-
pect a set of only four readings (from four different directions) to
enable us to reconstruct complex objects.

Figures 1a, b, c, seen at the very beginning of this article, sug-
gest a hexagonal improvement as a further generalization. Such
generalizations point us in a direction that may have been obvi-
ous from the start, namely an eventual circular arrangement of
emitter/sensor banks surrounding the object to be scanned. One
notion that we should address that did not fully emerge in our
simple presentation is that the internal grid of cells has its own
Cartesian geometry (rows and columns) while the sensor banks
seem to evolve into a polar geometry. Lengths of paths traveled
through each cell, because they differ depending on the direction
of approach, need to be taken into account in a circular model. It
is also probably obvious that better resolution of the final image
calls for a finer mesh for our internal grid while maintaining its
Cartesian character of rows and columns. For those who are inter-
ested, Modules [5, 6], in which the different rays’ angle of approach
to the grid is figured into the analysis, provide a good place to
continue investigating this fascinating topic. You will see where
modifying our simplified technique gives rise to the use of linear
algebra with systems of equations recording the level of absorption
at each cell cumulated along the path of each ray. [7] is the next
level of generalization and brings the power of calculus into the
fray for a more powerful handling of the situation. Finally [8,9]
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present results that open the door to further and more sophisti-
cated improvements introducing the reader to Fourier and Radon
Transforms, mathematical operations very prevalent in computed
tomography.
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