Solutions and Discussions

Problem 2 - Volume 26, No. 2, Fall, 2002
Buildings A and B are separated by a 12 foot wide alley. One 15 foot ladder rests at the base of building A and leans against the wall of building B. Another 20 foot ladder rests at the base of building B and leans against the wall of building A. What is the height where the two ladders cross?

Editor's Comment: The solution to this problem, given by Laura Steil of Samford University, was published in the Spring, 2003 issue of the Journal. Here, we present a generalization of the problem and solution.

Solution

Eric Cleckler, Junior, Troy State University, Troy, AL.
We generalize the problem as follows: Buildings A and B are separated by an alley of width w. A ladder of length L_{1} rests at the base of building A and leans against the wall of building B. Another ladder of length L_{2} rests at the base of building B and leans against the wall of building A. We wish to derive a formula for the height h where the two ladders cross. Note that our problem will have a solution, provided that $L_{1}, L_{2}>w$. Hence, we will assume that this is the case. The situation is depicted in Figure 1.

From the triangle with sides of length L_{1}, w, and the wall of building B, we have $\cos (\alpha)=\frac{w}{L_{1}}$, or:

$$
\begin{equation*}
\alpha=\cos ^{-1}\left(\frac{w}{L_{1}}\right) . \tag{Eq.1}
\end{equation*}
$$

Similarly, from the triangle with sides of length L_{2}, w, and the wall of building A, we have $\cos (\beta)=\frac{w}{L_{2}}$, or:
(Eq. 2)

$$
\beta=\cos ^{-1}\left(\frac{w}{L_{2}}\right)
$$

Figure 1
Next, consider the triangle with base w, height h, and angles α, β, and γ shown in Figure 2.

Figure 2

The Law of Sines yields $\frac{\sin (\alpha)}{s_{2}}=\frac{\sin (\gamma)}{w}$. From this we can see that
(Eq. 3)

$$
s_{2}=\frac{w \sin (\alpha)}{\sin (\gamma)}
$$

Also, since $m \angle \alpha+m \angle \beta+m \angle \gamma=180^{\circ}$, we have $m \angle \gamma=$ $180^{\circ}-(m \angle \alpha+m \angle \beta)$. Again, using Figure 2, we have $\sin (\beta)=\frac{h}{s_{2}}$, and hence, $h=s_{2} \sin (\beta)$. Substituting the values of a, b, and s_{2}, from Eq. 1, 2, and 3, we get our answer:

$$
\begin{aligned}
h & =\frac{w \sin \left(\cos ^{-1}\left(\frac{w}{L_{1}}\right)\right) \sin \left(\cos ^{-1}\left(\frac{w}{L_{2}}\right)\right)}{\sin \left(180^{\circ}-\left(\cos ^{-1}\left(\frac{w}{L_{1}}\right)+\cos ^{-1}\left(\frac{w}{L_{2}}\right)\right)\right)} \\
& =\frac{w \sin \left(\cos ^{-1}\left(\frac{w}{L_{1}}\right)\right) \sin \left(\cos ^{-1}\left(\frac{w}{L_{2}}\right)\right)}{\sin \left(\cos ^{-1}\left(\frac{w}{L_{1}}\right)+\cos ^{-1}\left(\frac{w}{L_{2}}\right)\right)} \\
& =\frac{w \sqrt{1-\left(\frac{w}{L_{1}}\right)^{2}} \sqrt{1-\left(\frac{w}{L_{2}}\right)^{2}}}{\frac{w}{L_{2}} \sqrt{1-\left(\frac{w}{L_{1}}\right)^{2}}+\frac{w}{L_{1}} \sqrt{1-\left(\frac{w}{L_{2}}\right)^{2}}} \\
& =\frac{\sqrt{L_{1}^{2}-w^{2}} \sqrt{L_{2}^{2}-w^{2}}}{\sqrt{L_{1}^{2}-w^{2}}+\sqrt{L_{2}^{2}-w^{2}}}
\end{aligned}
$$

i.e., the height h where the two ladders cross is given by

$$
h=\frac{\sqrt{L_{1}^{2}-w^{2}} \sqrt{L_{2}^{2}-w^{2}}}{\sqrt{L_{1}^{2}-w^{2}}+\sqrt{L_{2}^{2}-w^{2}}} .
$$

