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Introduction

There are some integrable functions f for which the definite

integral
R b
a
f (x) dx cannot be calculated exactly. Because of this,

numerous methods of approximating definite integrals exist, in-
cluding Simpson’s rule and the trapezoidal rule. These well-known
numerical integration methods are based on polynomial interpo-
lation and are well-suited for computer implementation. In this
paper, we develop similar methods using trigonometric polynomi-
als and trigonometric splines and present comparisons with existing
numerical integration methods.

Simpson’s Rule

The scheme for approximating an integral using Simpson’s rule
is based on the fact that if P (x) is any polynomial of degree three

or less, then
R b
a
P (x) dx = b−a

6

¡
P (a) + 4P

¡
a+b
2

¢
+ P (b)

¢
. Since

there exists a unique quadratic polynomial Ax2 + Bx + C that
interpolates the function f at the points, (a, f(a)),

¡
a+b
2 , f

¡
a+b
2

¢¢
,

and (b, f(b)), the integral of this quadratic polynomial serves as an

approximation to
R b
a
f (x) dx. In other words,Z b

a

f (x) dx ≈
Z b

a

¡
Ax2 +Bx+ C

¢
dx.

Hence,

(Eq. 1)

Z b

a

f (x) dx ≈ b− a
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µ
f (a) + 4f

µ
a+ b

2

¶
+ f (b)

¶
.

The error term associated with Simpson’s rule is

− 1
90

∙
b− a
2

¸5
f (4) (ξ) , ξ ∈ (a, b) .

As a motivating example, we will derive Simpson’s rule using
the method of undetermined coefficients. This method, illustrated
here with a = 0 and b = 1, yields the formulaZ 1

0

f (x) dx ≈ A0f (0) +A1f
µ
1

2

¶
+A2f (1) .

which is exact if f (x) is a polynomial of degree less than or equal to
3. To obtain a formula that calculates integrals of quadratic poly-
nomials exactly, we simply force the integrals of the basis functions,
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f1 (x) = 1, f2 (x) = x, and f3 (x) = x2 to be represented exactly.
Doing this we obtain the following:

1 =
R 1
0
dx = A0 +A1 +A2

1
2 =

R 1
0
xdx = 1

2A1 +A2

1
3 =

R 1
0
x2dx = 1

4A1 +A2.

The solution of the system is A0 =
1
6 , A1 =

2
3 , A2 =

1
6 , thereby

yielding Z 1

0

f (x) dx ≈ 1
6
f (0) +

2

3
f

µ
1

2

¶
+
1

6
f (1) .

A more general application of the foregoing procedure on the in-
terval [a, b] can be used to obtain the form of Simpson’s rule given
in Eq. 1.

Integration Using Trigonometric Polynomials.

It is natural to ask whether a numerical integration formula
based on trigonometric polynomials would be better suited to ap-
proximate the integral of a trigonometric function than an ap-
proach based on quadratic polynomials. In the case of trigono-
metric polynomials, we have developed an approximation for the

integral
R b
a
f (x) dx by imitating the method of undetermined coef-

ficients described above in the derivation of Simpson’s rule. In our
case we use the following basis functions, first introduced in [1]

f1 (x) =
³
sin(t2−t)
sin(t2−t1)

´2
,

f2 (x) = 2
sin(t2−t) sin(t−t1)
(sin(t2−t1))2 ,

f3 (x) =
³
sin(t−t1)
sin(t2−t1)

´2
.

If we let h = b−a
2 , the formula that results is:R b

a
f (x) dx ≈

csc (2h)
¡−12 + h cot (2h) + 1

2 csc (2h)
¡
h− 1

4 sin (4h)
¢¢
f (a)

+
¡
csc (2h)

¡−12 + cot (2h) + csc (2h)¢¢ f ¡a+b2 ¢
+ csc (2h)

¡−12 + h cot (2h) + csc (2h) ¡h− 1
4 sin (4h)

¢¢
f (b) .
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This formula is exact for functions of the form af1 (x)+bf2 (x)+
cf3 (x) . We demonstrate this in examples in Table 1. Also, even
though this formula was derived on the interval [−h, h], it is valid on
any interval of length 2h. For example, if h = 1 and b−a = 2, the re-
sult is

R b
a
f (x) dx ≈ 0.385095f (a)+1.22981f ¡a+b2 ¢+0.385095f (b) .

Trigonometric-Spline-Based Integration Approximation
Method

Now we construct an approximation method based on trigono-
metric splines. The first step in this process is to choose an appro-
priate representation for the spline used in the construction. We
define a second-degree trigonometric spline in the following way:

Definition 1. Let t̃ ∈ [t1, t2] , 0 < t2 − t1 < π and let A1,
B1, C1 , A2 , B2 , and C2 be real numbers. Then, the function p (t)
given by

p (t) = A1

µ
sin(t̃−t)
sin(t̃−t1)

¶2
+ 2B1

µ
sin(t̃−t)
sin(t̃−t1)

¶µ
sin(t−t1)
sin(t̃−t1)

¶

+ C1

µ
sin(t−t1)
sin(t̃−t1)

¶2
, for t1 ≤ t < t̃

and

p (t) = A2

µ
sin(t2−t)
sin(t2−t̃)

¶2
+ 2B2

µ
sin(t2−t)
sin(t2−t̃)

¶µ
sin(t−t̃)
sin(t2−t̃)

¶

+ C2

µ
sin(t−t̃)
sin(t2−t̃)

¶2
, for t̃ ≤ t ≤ t2

is a second-degree trigonometric spline.
It is our intention to use this trigonometric spline to develop

a numerical integration formula similar to Simpson’s rule and to
compare the performance of this new formula in approximating
integrals of several families of functions with the performance of
Simpson’s rule. In particular, we will investigate whether our
trigonometric version of Simpson’s rule approximates trigonometric
integrals better than the polynomial-based Simpson’s rule.

Using the definition of spline in definition 1, we will develop
a trigonometric-spline-based integration method to approximateR b
a
f (x) dx. The value of the spline will be calculated at t = −h,

t = 0, and t = h and set equal to y0 = f (−h) , y1 = f (0) , and
y2 = f (h) respectively. We set the value of the left-hand side of the
spline equal to the value of the right-hand side at t = 0, and we set
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the “slope value” at t = 0 equal from both the left and the right.
Also, we let a = t1 = −h and b = t2 = h. Using this information,
the following system of equations is set up and solved for A1, B1,
C1, A2, B2, and C2 :

p (t1) = A1

³
sin(−t1)
sin(−t1)

´2
+ 2B1

³
sin(−t1)
sin(−t1)

´³
sin(0)
sin(−t1)

´
+ C1

³
sin(0)
sin(−t1)

´2
= A1 = y0

p0 (0) = −2 csc (h)B1 + 2 cot (h)C1 = s

p (0) = A1

³
sin(0)
sin(−t1)

´2
+ 2B1

³
sin(0)
sin(−t1)

´³
sin(−t1)
sin(−t1)

´
+ C1

³
sin(−t1)
sin(−t1)

´2
= C1 = y1

p (0) = A2

³
sin(t2)
sin(t2)

´2
+ 2B2

³
sin(t2)
sin(t2)

´³
sin(0)
sin(t2)

´
+ C2

³
sin(0)
sin(t2)

´2
= A2 = y1

p0 (0) = −2 cot (h)A2 + 2csc (h)B2 = s

p (t2) = A2

³
sin(0)
sin(t2)

´2
+ 2B2

³
sin(0)
sin(t2)

´³
sin(t2)
sin(t2)

´
+ C2

³
sin(t2)
sin(t2)

´2
= C2 = y2

where y0 = f (−h) , y1 = f (0) , y2 = f (h) , and s = 2δ1δ2
δ1+δ2

with

δ1 =
y1−y0
h and δ2 =

y2−y1
h .This system can be represented in

matrix form as follows:

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0 0 0 0
0 −2 csc (h) 2 cot (h) 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 −2 cot (h) 2 csc (h) 0
0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
A1
B1
C1
A2
B2
C2

⎤⎥⎥⎥⎥⎥⎥⎦=
⎡⎢⎢⎢⎢⎢⎢⎣
y0
s
y1
y1
s
y2

⎤⎥⎥⎥⎥⎥⎥⎦
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From this it follows that

R h
−h f (x) dx =

R 0
−h

"
A1

µ
sin(t̃−t)
sin(t̃−t1)

¶2
+ 2B1

µ
sin(t̃−t)
sin(t̃−t1)

¶µ
sin(t−t1)
sin(t̃−t1)

¶

+ C1

µ
sin(t−t1)
sin(t̃−t1)

¶2#
dt

+
R h
0

"
A2

µ
sin(t2−t)
sin(t2−t̃)

¶2
+ 2B2

µ
sin(t2−t)
sin(t2−t̃)

¶µ
sin(t−t̃)
sin(t2−t̃)

¶

+ C2

µ
sin(t−t̃)
sin(t2−t̃)

¶2#
dt

which results in

Z b

a

f (x) dx ≈

−1
4
csc2 (h) [−2h (y0+y2)+4hy1 cos(2h)+(y0−2y1+y2) sin(2h)] .

Comparison of Simpson’s Rule and Trigonometric
Integration Methods

We now present a comparison of exact integral values with
approximations calculated through the use of Simpson’s Rule, the
trigonometric polynomial-based method, and the trigonometric
spline-based method. These comparisons are shown for various
functions on the same interval and for several functions on differ-
ent intervals.
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Function Exact Simpson’s Trigonometric Trigonomet-
f (x) = Integral Rule Polynomial- ric Spline-

Value Approx- based Ap- based Ap-
imation proximation proximation

5 10 10 10 10

5x+ 7 14 14 14 14

x2 0.6̄ 0.6̄ 0.77019 0.77019

3x2 + 2 6 6 6.31057 6.31057

x3 0 0 0 0

3x3 + 2 4 4 4 4

x4 0.4 0.6̄ 0.77019 0.77019

x4 + 5 10.4 10.6̄ 10.7702 10.7702

x5 0 0 0 0

(x+ 1)5 10.6̄ 12 13.5529 13.5529

sin (x) 0 0 0 0

cos (x) 1.68294 1.69353 1.64595 1.64595

sin2 (x) 0.54535 0.472049 0.54535 0.54535

cos2 (x) 1.45465 1.52795 1.45465 1.45465

sin3 (x) 0 0 0 0

cos3 (x) 1.28573 1.43849 1.35129 1.35129

cos3 (x) 1.83108 1.91053 1.89664 1.89664

+sin2 (x)

Table 1. Comparisons of exact and approximate integral values

for
R 1
−1 f (x) dx.

Integral Exact Simpson’s Trigonometric
Integral Rule Polynomial-
Value Approx- based Ap-

imation proximationR 1
−1 x

2dx 0.66667 0.66667 0.77019R 3
1
x2dx 18.6667 18.6667 18.7702R 4

2
x2dx 18.6667 18.6667 18.7702R 1

−1
¡
cos2 (x) + sin3 (x)

¢
dx 1.60497 1.61679 1.5626R 3

1

¡
cos2 (x) + sin3 (x)

¢
dx 1.85711 1.85689 1.85796R 6

2

¡
cos2 (x) + sin3 (x)

¢
dx 0.997832 1.20019 0.695208

Table 2. Comparisons of exact and approximate integral values
over various intervals.

From these examples, it can be seen that there was no observ-
able difference in the trigonometric polynomial-based approxima-
tion method and the trigonometric-spline approximation method.
The reason for this has not been investigated at this time. Also,
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it can be seen in these examples that in both the linear and con-
stant functions, the trigonometric approximations agree with the
exact integral values. Whereas the trigonometric based methods
give exact integral values for odd polynomial functions, they give
only close approximations for the even polynomial functions. Also,
in the cases of the trigonometric functions, the trigonometric-based
methods often give closer integral approximations than Simpson’s
rule.
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