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1. Introduction

There are at least two ways in which using the famous Cardano
formulas (1545) to factor cubic polynomials present more difficul-
ties than the quadratic formula poses when factoring quadratic
polynomials. First and obviously, with its cube roots and roots of
roots, the Cardano formulas involve computations that are more
complicated. Second, we get less in return; in particular, with the
Cardano formulas we only obtain one out of three factors, whereas
the quadratic formula yields both factors of any given quadratic
polynomial. In this paper, we will describe a natural procedure
that will lead us to all three factors of an arbitrary cubic polyno-
mial with real number coefficients.

Let R denote the real field, and let R[X] denote the ring of
polynomials over R. Consider the cubic polynomial p(X) = X3 −
k ∈ R[X]. Let C denote the field of complex numbers, and let ζ be
a primitive 3rd root of unity, that is, ζ is one of the two complex

solutions of the equation X3 = 1. One calculates ζ =
−1 + i√3

2
,

where i =
√−1.

The cubic p(X) factors completely over C. Indeed, if 3
√
k is

the real 3rd root of k, then we have the factorization

X3 − k = (X − 3
√
k)(X − ζ

3
√
k)(X − ζ2

3
√
k),

and the roots of X3 − k are 3
√
k, ζ 3
√
k, ζ2 3

√
k.

[25]
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In this paper we show how to generate the roots of any cubic
polynomial over R in an analogous manner, using ζ, and a solution
(a, b) of the equation X3 + Y 3 = 1 over C.

2. Generating the roots of a cubic polynomial

The problem of finding all the zeros of an arbitrary monic cubic
polynomial

f(X) = X3 + αX2 + βX + γ

is equivalent to the problem of finding the zeros of the reduced
cubic

g(X) = X3 + δX + ².

We see that if c is a zero of g(X), then c− (1/3)α will be a zero of
f(X), cf. [3, p. 568]. It is not difficult to show that any reduced
cubic can be written in the form

p(X) = X3 − 3k2abX + k3

where (a, b) ∈ C ×C is a solution to the equation X3 + Y 3 = 1.
For example, if p(X) = X3 − 12X + 8, we choose k = 2 and a and
b so that a3 + b3 = 1 with ab = 1. Hence the required solution is
(a, 1/a), where a is the root

a =
3

s
1

2
+
i
√
3

2

of the quadratic equation in X3: X6 −X3 + 1 = 0.
With this in mind, we prove the following:

Theorem. Suppose p(X) is a reduced cubic in the form

p(X) = X3 − 3k2abX + k3

where (a, b) is a solution of the equation X3 + Y 3 = 1, and k
is a real number. Then the roots of p(X) are
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c1 = −ka− kb
c2 = −kaζ − kbζ2
c3 = −kaζ2 − kbζ.

Proof. One could show directly that p(ci) = 0 for i = 1, 2, 3, but
we present a different proof.

Consider C3, the vector space generated by ordered triples
(r, s, t) of complex numbers. Set r = ka, s = kb, and t = c1 =
−ka− kb. Then the set

S = {(ka, kb, t), (t, ka, kb), (kb, t, ka)}

is linearly dependent over C. To see this, observe that:

(−1)(ka, kb, c1) + (−1)(c1, ka, kb) = (kb, c1, ka)

is a dependence relation. It follows that the matrix

A =

⎡⎣ ka kb c1
c1 ka kb
kb c1 ka

⎤⎦
is singular, since the rows of A are linearly dependent. Thus

det(A) = k3a3 + k3b3 + c31 − 3k2abc1 = 0,

which we may rewrite as

k3a3 + k3b3 − k3 + (c31 − 3k2abc1 + k3) = 0, or

c31 − 3k2abc1 + k3 = 0,

since (a, b) is a solution of X3 + Y 3 = 1. We conclude that c1 =
−ka−kb is a root of our reduced cubic p(X) = X3− 3k2abX+k3.
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To find the other roots of the cubic p(X), we find other values
of t so that the set

S = {(ka, kb, t), (t, ka, kb), (kb, t, ka)}

is linearly dependent. Another such value is t = c2 = −kaζ−kbζ2.
To see this, observe that the set S is linearly dependent via the
relation

(−ζ2)(ka, kb, c2) + (−ζ)(c2, ka, kb) = (kb, c2, ka).

The matrix

A =

⎡⎣ ka kb c2
c2 ka kb
kb c2 ka

⎤⎦
is singular, and

det(A) = k3a3 + k3b3 + c32 − 3k2abc2 = 0,

which, in turn, implies that

c32 − 3k2abc2 + k3 = 0.

Thus c2 is the second root of p(X).
Finally, if we put t = c3 = −kaζ2 − kbζ the set

S = {(ka, kb, t), (t, ka, kb), (kb, t, ka)}

is linearly dependent via the relation

(−ζ)(ka, kb, c3) + (−ζ2)(c3, ka, kb) = (kb, c3, ka).

The matrix

A =

⎡⎣ ka kb c3
c3 ka kb
kb c3 ka

⎤⎦
is singular, and

det(A) = k3a3 + k3b3 + c33 − 3k2abc3 = 0,
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which, in turn, implies that

c33 − 3k2abc3 + k3 = 0.

Thus c3 is the third and last root of p(X). ¦
Returning to our example p(X) = X3 − 12X + 8, we obtain

the factorization

p(X) = (X + 2a+ 2a−1)(X + 2ζa+ 2ζ2a−1)(X + 2ζ2a+ 2ζa−1),

where

a =
3

s
1

2
+
i
√
3

2
.

We close with a final thought. Let Q denote the rational num-
bers. Suppose p(X) = X3 − 3k2abX + k3 is a reduced cubic over
Q with exactly one rational root with k2ab 6= 0. Because Fermat’s
Last Theorem is true for the case n = 3, there are no non-trivial
solutions to the equation X3 + Y 3 = 1 in Q×Q. Hence if we use
our cubic formula to calculate this rational zero, we must involve
non-rational reals or non-real complex numbers. We wonder if this
is the case using the standard cubic formula, see [3, Theorem 51.3].

References

[1] K. Hoffman, R. Kunze, Linear Algebra, Second Edition,
Prentice-Hall, New Jersey, 1971.

[2] K. Ireland, M. Rosen, A Classical Introduction to Modern
Number Theory, Second Edition, Springer-Verlag, New York,
1990.

[3] S. Warner, Modern Algebra, Vol. II, Prentice-Hall, New
Jersey, 1965.

Department of Mathematics
Auburn University Montgomery
Montgomery, AL 36124
underw@strudel.aum.edu



30 Alabama Journal of Mathematics


