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Abstract. The role of logic in mathematical activities is
indisputable. Indeed, it has become a cornerstone for many
of the important achievements in the field of mathematics.
This paper is about a conversion of classic logic into the
fascinating world of fuzzy logic. Fuzzy logic has put a new
perspective on the once crisp ideas of classical logic. Mul-
tivalued logic, which has been in existence for some time,
has opened new horizons and changed the way many think
about logic. If you allow a set of multiple values, as used
in multivalued logic, to become a set of infinitely many val-
ues contained between false and true, the underlying idea
behind fuzzy set theory and fuzzy logic is exposed. This
paper contains a short history of the origin of fuzzy logic,
an accepted definition, and some of its uses in the field of
mathematics. It also contains other noteworthy and inter-
esting observations in the field of fuzzy logic.

Aristotle and many philosophers who preceded him deserve
much credit for the current precision of mathematics. In their ef-
forts to define a concise theory of logic, the present day idea of
conventional (Boolean) logic was formed. The conclusion gener-
ated by their efforts led to a strict law: a statement is either true
or not true. When placed in binary logic, their claim states that ev-
ery false statement has a truth-value of 0 and every true statement
has a truth-value of 1, and there can be no middle ground. This
conclusion is entitled Aristotle’s Law of Bivalence and was accepted
as philosophically correct for over two thousand years. Notwith-
standing its general acceptance, this law has not existed without
objection. It can easily be conceived that things are simultane-
ously true and not true. For example, conventional (Boolean) logic
states that a glass can either be full or not full of water. However,
suppose a glass were filled only halfway. Then the glass can be

[13]



14 Alabama Journal of Mathematics

half-full and not half-full at the same time. The statements half-
full and not half-full simultaneously represent the same situation,
and therefore, apparently violate Aristotle’s Law of Bivalence. The
given example gives way to the existence of values between false
and true. This concept is the basis for multivalued logic. If al-
lowed, this logic could have an infinitely vast number of values
contained between false and true, and thus statements can take on
truth values represented by real numbers x that satisfy the condi-
tion 0 ≤ x ≤ 1. The concept of statements having certain degrees
of truth is the fundamental principal that propelled Dr. Lotfi A.
Zadeh of the University of California at Berkeley in 1964 to intro-
duce fuzzy set theory, fuzzy logic, and many other extensions of
fuzzy applications in mathematics. Fuzzy logic can be described as
the construction of a membership function where the values false
and true operate over the range of real numbers [0.0, 1.0] ,where
0.0 and 1.0 are the extreme cases of truth. The essential character-
istics of fuzzy logic as set by Zadeh, now called the Father of fuzzy
logic, are:

• In fuzzy logic, exact reasoning is viewed as a limiting case
of approximate reasoning,

• In fuzzy logic, everything is a matter of degrees,
• With fuzzy logic, any logical system can be fuzzified,
• In fuzzy logic, knowledge is interpreted as a collection of
elastic or fuzzy constraints on a collection of variables,

• Inference is viewed as a process of propagation of fuzzy
constraints [10].

Due to the third characteristic given above, it is now possible to
take Boolean logic and generalize it to form a precise definition of
fuzzy logic. By definition, fuzzy logic is a superset of conventional
(Boolean) logic that has been extended to handle the concept of
partial truth values between the extreme cases completely false
and completely true, i.e., fuzzy logic describes modes of reasoning
which are approximate rather than exact. The use of fuzzy logic
holds precedence in that natural language and our human reasoning
process are approximate in nature. These two human necessities,
as well as most other activities in life are not easily translated into
terms of 0’s and 1’s. It is even debatable if they can be put into
these terms at all. Humans aggregate information and data to
form a number of partial truths. We then take these and aggregate
further to determine higher level of truths. Once a certain degree of
acceptable truth is met or exceeded in the process, an action such
as speech will occur. A similar kind of process occurs in computer
technology in the creation of neural networks and expert systems
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to achieve certain tasks. In basic terms, fuzzy logic seems closer to
the way our brains actually work than conventional logic.

In classical logic, statements are taken and examined in rela-
tionship to each other to derive a single conclusion from their con-
nection. The common logical operations in classical logic include:
negation, conjunction, disjunction, implication, and equivalence.
The negation of a statement P is “not (P ) , ” written as “˜P ; ” the
conjunction of statements P and Q is “P and Q, ” or “P ∧Q; ” the
disjunction is “P or Q,” denoted by “P ∨ Q; ” the implication is
“If P then Q, ” written “P → Q; ” lastly, the equivalence is “P if
and only if Q, ” or “P ↔ Q.”. The usual way of viewing changes
in classical logic is through the use of truth tables. Truth tables
allow the extreme points created in classical logic to be viewed in
a true-false manner. In order to convert classical logic into fuzzy
form, a few conversion standards had to be set into place. Let
the notation t (P ) denote the truth value of the statement P. The
standards for conversion are as follows:

• Negation: t (˜P ) = 1− t (P )
• Conjunction: t (P ∧Q) = min {t (P ) , t (Q)}
• Disjunction: t (P ∨Q) = max {t (P ) , t (Q)}

To show the conversions by example, let P be a statement
with the truth value 0.8, and let Q be a statement with the truth
value 0.7. The negate or negation of the statement P in fuzzy
form is represented t (˜P ) = 1 − 0.8, and generates the truth
value of 0.2. The conjunction of the statements P and Q in fuzzy
form is t (P ∧Q) = min {0.8, 0.7} , and generates a truth value
of 0.7. The disjunction, t (P ∨Q) = max {0.8, 0.7} , and generates
the truth value of 0.8. The rules for conversion create functions
that can be used to generate values based on changing variables
of truth. Implication by definition can be written in the form
˜ (P ∧ ˜Q) ; equivalence in the form (P → Q) ∧ (Q→ P ) . Now
with simple substitution the fuzzy definitions of implication and
equivalence can be stated. Fuzzy implication in formula form is
1−min {t (P ) , 1− t (Q)} . Fuzzy equivalence defined in functional
form is min { 1−min {t (P ) , t (Q)} , 1−min {t (Q) , 1− t (P )} } .
It is easily seen that these definitions represent two-dimensional
functions whose domain is the unit square in the first quadrant.
The graphical representations of these two-dimensional functions
are referred to as fuzzy truth surfaces. The fuzzy truth surface for
implication is shown in Figure 1:
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Figure 1 Implication

It is important to realize that in the conversion from classical
logic to fuzzy, all the classical values of false and true remain the
same. Indeed, the corner points of the cube in Figure 1 correspond
to the classical logic values. Figures 2 — 5 illustrate additional
examples of fuzzy truth surfaces.

Figure 2
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Figure 3

Figure 4
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Figure 5

An important distinction between classical logic and fuzzy logic
is the concept of a tautology. A tautology in classical logic is a
statement or formula that is always true and has a truth-value
of 1.0. Another defining term for a classical tautology is “strictly
true theorems of logic.” A tautology is evident in truth tables
when, in each of all logical cases, the outcome is true. The notion
of a fuzzy tautology is less clear. One interpretation of a fuzzy
tautology is a statement or formula whose truth value is never
0.0, meaning that a fuzzy tautology can have varying degrees of
truth. In classical logic, any statements, whether they are true
or false when placed in a tautology, are such that the resulting
compounded statement is still a tautology and has a truth-value
of 1.0. In fuzzy logic, where statements are based on degrees of
truth, the varying degrees, when substituted into converted fuzzy
tautology formulas, generate outcomes higher than 0.0, but not al-
ways 1.0. For example, the classic tautology Modus Ponens is given
logically as ((P → Q) ∧ P )→ Q. Translating into fuzzy form gives
1−min {min {1−min (t (P ) , 1− t (Q)) , t (P )} , 1− t (Q) } and
is represented graphically in Figure 6.



Spring 2002 19

Figure 6

The introduction of fuzzy logic into the field of Mathematics
has opened a profound array of new ideas. Fuzzy Mathematics is
still in its academic infancy, but it has already proved its value in a
number of areas. Almost every branch of applied mathematics has
been influenced or directly affected by fuzzy logic. A simple defini-
tion for fuzzy mathematics would be the use of fuzzy quantities or
numbers and other fuzzy variables introduced into the commonly
strict field of mathematics in order to calculate somewhat crisp
outcomes. Fuzzy quantities or numbers are fuzzy subsets of the
universe of a numerical number, or simply a number whose precise
value is somewhat uncertain. In other words, a fuzzy real number
is a fuzzy subset of the domain of real numbers; a fuzzy integer is a
fuzzy subset of the domain of integers, etc. An example of a fuzzy
real number is “about 10” which is shown in Figure 7:

Figure 7
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The example above represents a triangular fuzzy number. Fig-
ures 8 and 9 illustrate two other common ways to express fuzzy
numbers graphically.

Figure 8

Figure 9

Figure 8 illustrates a trapezoidal fuzzy number whereas Figure
9 illustrates a bell-shaped fuzzy number. These types of fuzzy
numbers are characterized as convex functions that start with a
membership grade of 0, rise to a maximum of 1, signifying full
membership, and then return to 0, or no membership again. There
also exist alternative types of fuzzy numbers that begin or end in
full membership such as “slightly less than or equal to 10.” A
graphical representation of this type of fuzzy number is a one-
sided triangular fuzzy number also called a slope fuzzy number.
We often use modifying words to express fuzzy numbers, such as
“about 10,” in the above example. These words are called hedges.
A hedge is a linguistic term to qualify fuzzy variables by increasing,
reducing, or restricting membership levels. Other hedges include
“slightly,” “somewhat,” and “approximately.” When working with
fuzzy numbers, it is possible to make approximate comparisons.
This is very useful when data is imprecise or when rigidity of input
variables is not needed.

Fuzzy applications in mathematics include various other fields.
Fuzzy Geometry deals with concepts of “somewhat straight lines”
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and “not quite round circles.” Ovals are also studied in fuzzy ge-
ometry as a shape not fitting traditional geometry. Fuzzy Graph
Theory is a generalization of conventional graph theory. Fuzzy
graphs describe functional mappings between a set of input linguis-
tic variables and an output linguistic variable. This process uses
If-Then statements. Other fuzzy graphs are constructed, based
on fuzzy points or incomplete data. Also, there exist Fuzzy Alge-
bra, Fuzzy Topology, and Fuzzy Calculus. Presently, sets of fuzzy
algorithms are being used to solve real world problems that are
missing necessary variables. Through the introduction of fuzzy
mathematics, many complexities that were once unfathomable are
being examined. Classical mathematics can only deal with the
simplest of models when compared to the complexities of human
reckoning in the real world. Although these models enlighten us to
many phenomena, they have the limitation of only allowing abso-
lutes. Fuzzy mathematics permits not only absolutes, but also all
possible degrees between the extremes. For this and other reasons,
many mathematicians are using fuzzy methods and models in their
current research and applications.

At this juncture it is important and necessary to point out the
difference between probability and fuzzy systems. Both operate
over the same numeric range, and at first glance have similar values:
0.0, representing false (or non-membership), and 1.0, representing
true (or membership). However, there is a distinction to be made
between the meaning of probability and the meaning of fuzzy truth
values. In probability, the phrase, “there is an 80% chance that
John is tall,” takes the view that John is either tall or not tall,
when compared to a set height for the term tall. This probability
gives us a degree or likelihood to determine if John will belong
to the set or not. The fuzzy statement sounds more like, “John’s
degree of membership within the set of tall people is 0.80.” This
statement gives us the view that John is in the set of tall people
already and is “considerably” tall, corresponding to the value of
0.80.

Another distinction to be made between probability and fuzzy
logic, is in the computing of operations. For independent events,
the probabilistic operation for and is multiplication, whereas the
fuzzy operation takes the minimum of the two separate values
as the result; the probabilistic operation for or is (x+ y − x · y) ,
whereas the fuzzy operation takes the maximum. Although similar
in some aspects, there is a clear distinction between probability
and fuzzy logic both mathematically, as well as in interpretation
and application.

It is not surprising that the far-reaching theories of fuzzy logic
and fuzzy mathematics arouse several objections in, not only the
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mathematical community, but also many other professional com-
munities. There have been many generic complaints about the
“fuzziness” of the process of assigning values to linguistic terms.
Many classical logicians argue that in every case where fuzzy logic
is utilized, it can be shown that fuzzy logic is not necessary and
could be done mathematically through the use of compounded clas-
sical logic or the combinations of classical logic statements. Many
logicians also claim that the terms false and true are rigid, inflex-
ible terms. Any fuzziness added into a statement arises from an
imprecise definition of the terms within the statement, not in the
nature of truth [4]. They also claim that no area of data manipu-
lation is made easier with the introduction of fuzzy calculations; if
anything, the calculations become more complex in nature. Other
objections include ideas such as:

• There is no set standard for the “defuzzification” process
(that is, how to convert fuzzy sets to usable data and
apply the outcomes),

• The soundness of the whole concept (especially mathe-
matically), and the use of fuzzy logic is too complex and
could possibly be unstable (emphasizing that membership
functions, their rules, and algorithmic steps used to create
fuzzy systems are very complex, and because of their lack
of subsistence, there have been no long term uses with
fuzzy systems to show their stability and dependability)
[1] [4].

In response to these arguments, proponents of fuzzy logic try
to explain the notion that fuzzy logic and classical logic should not
be viewed as competing against each other, but be seen as com-
plements [4]. They claim that semantic clarity should not be the
cause for objections, but that fuzzy statements should be trans-
lated into phrases which classical logicians would find acceptable.
Fuzzy logic has been deemed acceptable in many various applica-
tions, notably consumer products, and has proved very successful
there. The benefits created by fuzzy systems alone are reason for
continued development and implementation to occur in this new
horizon.

In conclusion, the bounds on fuzzy mathematics and fuzzy logic
are almost limitless. New areas of their use are being found daily.
Its applications in industry, business, healthcare, and education
are successful and could potentially cause problems if removed.
Although fuzzy logic was developed as a better method for handling
and sorting data, it has proven itself to be much more useful in
other applications, including the strict field of mathematics.
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