Problems

(1) For each $D \geq 2$, determine all D-digit numbers N such that taking the last D digits of N^{2} yields N.
(2) In the tiny nation of Piconesia, currency only exists in denominations of 8 picons and 13 picons. Determine the largest integer number of picons that Piconesians cannot pay exactly without receiving change. Also, in any nation whose currency only has denominations of M and N units, determine the largest integer amount that cannot be paid without receiving change. (Assume that M and N are relatively prime.)
(3) Construct a function $F\left(x_{1}, y_{1}, x_{2}, y_{2}, x_{3}, y_{3}\right)$ such that $F\left(x_{1}, y_{1}, x_{2}, y_{2}, x_{3}, y_{3}\right)=0$, if and only if points $\left(x_{1}, y_{1}\right)$, $\left(x_{2}, y_{2}\right)$, and $\left(x_{3}, y_{3}\right)$ form the corners of an equilateral triangle.
(4) Let C denote a circle with radius R. Let $W X Y Z$ be a rectangle such that points W and Y lie on circle C, point X is in the interior of C, and point Z is exterior to C. Determine the maximum possible distance from Z to circle C.
(5) Define set S as follows:
$S=\{n \in \mathbf{N}: n$ has no prime factor larger than 11$\}$.
Compute the sum of the reciprocals of all the values in set S.
(6) Find all integer pairs (x, y) such that $x^{3}+y^{3}=6 x y$.

Solutions, comments, and discussions should be sent to:

Ken Roblee
Department of Math \& Physics 232 MSCX
Troy State University
Troy, AL 36082
(334)670-3406

FAX (334)670-3796
kroblee@troyst.edu

Vicky Eichelberg
Saint James School 6010 Vaughn Road
Montgomery, AL 36116
(334)277-8033

FAX (334)277-8059
eichelberg2@charter.net

