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Introduction

I would like to thank the AACTM for inviting me to give the
Lewis-Parker Lecture for 2006. This article, which is based on the
lecture, represents a survey of an area of applied mathematics with
which I have been intimately involved over the last sixteen years.
My goal here is to provide an overview of the research related to
the phenomenon of airway closure. I will start with some things
of basic physiological significance to this phenomenon. This will
be followed by a description of the physical mechanisms that give
rise to airway closure. A range of mathematical models, which
consist of systems of partial differential equations and which vary
in complexity, will be discussed. Additional information on related
research topics can be found in several review articles. See, for
example, [1, 2, 3].

Background and Significance of Airway Closure

A healthy human breathes approximately 24 quarts of air per
minute, or 75 million gallons of air in a lifetime. The air that
we breathe through our noses and mouths is conveyed through
a network of branching airways to the alveoli, which are the air
sacs at the distal parts of the lung (see figure 1). Gas exchange

[1]
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occurs in the alveoli. The primary mechanism is diffusion: there is
a huge surface area over which gas is in close contact with blood
vessels. The smaller airways and the alveoli are coated with a
thin liquid layer containing surfactant. Surfactant tends to reduce
the surface tension at an air-liquid interface. Normally, molecules
within a liquid are attracted equally from all sides (see figure 2).
However, those near the surface experience unequal attractions.
Molecules near a surface experience a net force which tends to pull
them back into the liquid. A simple experiment that conveys the
effect of surface tension is the blowing of a bubble at the end of
a tube. The surface of the bubble contracts as much as it can.
The soap bubble takes a spherical shape since it has the smallest
possible surface area for a given volume. It can be shown from
thermodynamic principles [4], that there is a pressure difference P
across the interface, where

(1) P = 2
σ

r

depends on the surface tension σ and the radius of the sphere r.
This expression for the pressure difference is known as Laplace’s
Law of Pressure. An analogy is the tension on the surface of a bal-
loon which is balanced by the pressure difference across its surface.

Figure 1: Airway network of the lung. The trachea divides into the
primary bronchi, which in turn divide into the secondary bronchi and so
on until the terminal bronchioles which are the smallest airways without
the alveoli. The terminal bronchioles branch into the respiratory bron-
chioles (not shown), and these are followed by alveolar ducts and the
alveoli.
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Figure 2: Molecules near the surface experience a net force which
tends to pull them back into the liquid. Surface tension is the tendency
of liquids to reduce their exposed surface.

A constant surface tension is not desirable in the lung because
smaller alveoli will blow up into larger ones as they generate larger
pressures. This can also be a problem in the small airways which
are also liquid-lined. Consider a rigid cylindrical tube with radius
a which is lined with a liquid layer of thickness b− a, as shown in
figure 3. The difference between the air and liquid pressures, pair
and pa respectively, is

(2) pair − pa = σ

b
.

Suppose the location of the air-liquid interface is perturbed with
a disturbance of wavelength λ so that it is now located at r =
b + h(z, t) where (r, z) are the usual cylindrical coordinates and
h ∼ hte i2πzλ . Then the pressure difference is

(3) pair − pa = σ

µ
1

N(b+ h)
− hzz
N3

¶
where N = (1 + h2z)

1
2 and the subscript z denotes differentiation

with respect to z. The first term in equation 3 corresponds to
the transverse component of curvature ( 1R1 in figure 3) and the
second one ( 1R2 in figure 3) is the axial component of curvature.
The transverse component is destabilizing if the wavelength of the
disturbance exceeds the circumference of the core. Thus, flows
within the lung’s liquid lining can result in the formation of a liquid
plug blocking the passage of air. This destabilizing phenomenon
due to surface-tension is known as the Rayleigh instability [5]. In
addition, since the airways are compliant tubes, they can buckle
and collapse because a reduction in the film pressure due to the
surface-tension instability can lead to a significant pressure drop
across the airway wall.
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Figure 3: Destabilizing effect of surface-tension at the interface be-
tween the air-core and the liquid film coating a cylindrical tube. Here
1
R1

and 1
R2

are, respectively, the transversal and axial components of
curvature.

Normally alveoli do not collapse because of the presence of pul-
monary surfactants. These are surface-active molecules produced
by type II alveolar cells that like to migrate to air-liquid interfaces.
Their proteins and lipids have both a hydrophilic (water-loving)
head and a hydrophobic (water-hating) tail. The most energetic
configuration is for the heads to be in the water with the tails to
stick out in the air. Surfactants reduce the surface tension by inter-
acting with the cohesive force between water molecules at the air-
liquid interface. Surfactants can have a stabilizing effect: smaller
alveoli no longer have the tendency to empty into larger ones (see
figure 4). This is because surfactant molecules are more closely
packed, thus reducing the surface tension in smaller alveoli. This
stabilizing effect also occurs in the small airways. Consider a thin
liquid layer coating a rigid cylindrical tube as shown in figure 5.
Based on equation 3, there is a destabilizing pressure difference
between peaks and troughs (of the air-liquid interface) that drives
flow within the film layer between the peaks and troughs. At the
same time, surfactant molecules are swept from the peaks to the
troughs by this flow, resulting in a lower surface tension at the
troughs compared to the peaks. This surface tension difference in-
duces a surface (Marangoni) flow from troughs to peaks opposing
the destabilizing capillary flow.

Airway closure not only occurs in diseases which are due to
surfactant deficiency and increase the surface tension, but it can
also occur in diseases in which the liquid lining the airways is thicker
than normal or the properties of the lining such as its viscosity are
not within the normal range. Examples include congestive heart
failure, asthma, emphysema and cystic fibrosis. In all these diseases
gas exchange is compromised when closure occurs and can be life-
threatening.
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Figure 4: The surfactant molecules on the surface of the smaller bub-
ble are more closely packed. This implies a lower surface tension and
therefore the tendency of the smaller bubble to empty is decreased.

Figure 5: The stability mechanism of surfactant in an airway. Sur-
factant is swept from peaks to troughs due to the destabilizing surface
tension (capillary) flow, producing a surface tension gradient on the
air-liquid interface which can then drive a surface flow in the opposite
direction to that of the capillary flow.

Previous Theoretical Models of Airway Closure

Airway closure can occur due to the formation of a liquid plug
blocking the passage of air as the result of a surface tension in-
stability (the Rayleigh instability). The latter can also provoke
the collapse of a compliant airway wall (a capillary-elastic insta-
bility). In [6] and [7[ it was shown, based on static equilibrium
arguments, that if the volume of fluid coating a cylindrical tube
exceeds a critical value Vc = 5.47a3, a liquid plug will form. There
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have been many theoretical models that have examined the dy-
namic instability of a liquid-lined tube [8, 9, 10, 11, 12, 13, 14, 15].
Hammond [8] studied the stability of a thin liquid layer coating the
inner surface of a cylindrical tube. A partial differential equation
that describes the evolution of the deflection of the air-liquid inter-
face was derived using lubrication theory. This is an approximate
model which is appropriate for asymptotically thin films. The air-
core phase was taken to be passive. In this model, disturbances
grew and saturated but closure could not be predicted. Gauglitz
and Radke [9] extended the model due to [8] by including a more
accurate representation of the interfacial curvature for thicker liq-
uid layers and were able to show that there is a critical value of
the thickness parameter ² ≈ 0.12, the ratio of the film thickness
to the tube radius, above which a liquid plug formed. Halpern
and Grotberg [11] demonstrated, using an axisymmetric lubrica-
tion theory model, that airway wall compliance could magnify the
surface tension instability. More recently, Hazel and Heil [16] used a
three-dimensional model that allowed for the airway wall to buckle
and showed that the critical ² could be smaller than that predicted
by two-dimensional theory. As explained previously, surfactant can
have a stabilizing effect. Using models with varying degrees of com-
plexity, [12, 13, 15] showed that surfactant could delay the onset
of closure by approximately a factor of four or five as compared to
an interface free of surfactant. However, there are very few models
that examine the effects of the air core. Halpern and Grotberg
[14] used a lubrication theory model to investigate the effect of
an oscillatory core flow and showed that it could prevent closure
from occurring by saturating the surface tension instability. Some
additional details and results of this model are given in the next
section.

A Two-Dimensional Mathematical Model of Airway
Closure

We briefly review here some of the previous mathematical mod-
els used to describe the phenomenon of airway closure. Consider
a thin liquid layer of thickness a− b coating the inner surface of a
circular straight tube of radius a. For simplicity we assume the sur-
face tension on the air-liquid interface is constant. The air, which
makes up the core phase, oscillates back and forth with a certain
frequency and amplitude.

The location of the air-liquid interface is initially perturbed.
This initial disturbance drives flows within the liquid layer and the
core which will in turn cause the air-liquid interface to deflect so
that its radial location at time t∗ and axial location z∗ is r∗ =
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R∗(z∗, t∗) = b + h(z∗, t∗). By making certain assumptions it is
possible to derive a nonlinear evolution equation for R∗(z∗, t∗).
The phenomenon of airway closure can then be studied by solving
this equation. The fluid motion is governed by the equations for
conservation of momentum and mass, also known as the Navier-
Stokes and continuity equations. For a Newtonian fluid these are
given by

ρ

µ
∂v∗

∂t∗
+ v∗ ·∇∗v∗

¶
= −∇∗p∗ + µ∇∗2v∗,

∇∗ · v∗ = 0
where ρ is the density, µ is the viscosity, v∗ = (w∗, u∗) is the
velocity vector with axial component w∗ and radial component u∗,
and p∗ is the fluid pressure. In addition, there are boundary and
interfacial conditions that are applied at the airway wall and at the
air-liquid interface. At the tube wall, r∗ = a,

(4) v∗ = 0,

which means no relative motion between the fluid and the tube
surface, also known as the no-slip velocity condition, and the wall
is impermeable. The interface moves with the fluid and there is
no fluid crossing it. Then the total derivative of r∗ − R∗(z∗, t∗) is
zero, yielding the kinematic boundary condition:

(5)
∂R∗

∂t∗
= u∗ − w∗ ∂R

∗

∂z∗
.

In addition there is no jump in tangential stress across the interface
if the surface tension is constant, and the jump in normal stress is
equal to the product of the surface tension and the curvature of the
interface (the Laplace law). These two conditions can be expressed
as follows:

(6) [t∗ ·T∗n∗] = 0, [n∗ ·T∗n∗] = σ∇∗ · n∗
where [A]cf = Ac − Af denote the jump in A across the interface,

n∗ = (1 + R∗2z∗)−
1
2 (−R∗z∗ , 1), t∗ = (1 + R∗2z∗)−

1
2 (1, Rz∗) are the

unit normal and tangential vectors, and T∗ = −p∗I + µ(∇∗v∗ +
(∇∗v∗)T ) is the stress tensor.

It is convenient to non-dimensionalize the governing equations
of motion and boundary conditions and perform a scaling analy-
sis. A small parameter ² = (a − b)/a << 1 is introduced which
represents the ratio of unperturbed film thickness to the tube ra-
dius, and defines a new stretched radial coordinate y = (a− r)/²a.
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This, in addition to other simplifications described in [14], allows
for analytical expressions for the velocity and pressure fields to be
obtained in terms of the deflection h(z, t). These in turn can be sub-
stituted into the kinematic boundary condition to yield a nonlinear
evolution equation for h(z, t):

(7)
∂h

∂t
= − 1

3(1− ²+ ²h)
∂

∂z

µµ
∂κ

∂z
+

∂pc
∂z

¶
(1− h)3 + 3

2
τ (1− h)2

¶

where κ is the interfacial curvature, pc is the core pressure, τ is
the core shear stress and all unstarred variables are dimensionless.
Expressions for pc and τ are given in [14]. This equation can be
solved numerically subject to periodic boundary conditions and a
small amplitude initial condition. It has no analytical solution.
However, at early times, when the deviation from the initial condi-
tion is still small, equation 7 can be approximated by the following
linear equation:

(8)
∂h

∂t
+
1

3

µ
∂2h

∂z2
+

∂4h

∂z4

¶
+A sin(Ωt+ φ)

∂h

∂z
= 0.

The second and third terms represent the transversal and axial
components of curvature, and the last term is due to the oscillatory
core shear that can be characterized by an amplitudeA, a frequency
Ω, and a phase shift φ. A linear stability analysis is applied in
which a small disturbance is expressed in terms of periodic normal
modes, and an eigenvalue problem for the growth rate is obtained
(see figure 6). This can be done by seeking a solution of the form

(9) h = ĥ exp(ikz + st)

where k represents a wavenumber. If it is found that the real part of
s is positive then the system is unstable, and conversely if the real
part of s is negative the system is stable because the disturbance
remains small. In this case it can be shown that

(10) s =
1

3
k2(1− k2).



Fall 2007 9

Figure 6: Normal Mode Analysis. Uniform film is perturbed with a
sinusoidal disturbance of wavenumber k.

Figure 7: Linear Stability: Growth rate s versus wavenumber k. If
s ≥ 0, system is unstable, and stable if s < 0.

Thus the system is unstable for 0 < k < 1, that is for a distur-
bance whose wavelength exceeds the circumference of the tube (see
figure 7). Note however that the linear stability analysis is only
valid while the disturbance remains small. The neglected nonlin-
ear terms which were dropped from the evolution equation (eq.
7) become important once the exponentially growing linear distur-
bances become sufficiently large. In this case, the nonlinear equa-
tion (7) has to be solved numerically. This is accomplished using
the method of lines which involves discretizing the spatial deriv-
atives appearing in equation 7 with fourth order finite difference
approximations on a uniform grid and then solving the resulting
system of ordinary differential equations in time with an implicit
backward difference scheme. If there is no core flow, closure of a
liquid lined tube can occur if the dimensionless film thickness ² ex-
ceeds 0.12. Then the minimum core radius Rmin approaches zero
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in finite time. If the frequency of the core flow is sufficiently high,
Halpern and Grotberg [14] showed that shear stress supplied by
the core to the interface could cause the film to oscillate back and
forth in such a way that closure was prevented. Figure 8 shows the
shape of the air-liquid interface at different instances of time after
this initial exponential growth period. In this figure r = 1 defines
the tube wall position and r = 0 defines the location of the axis
of the tube. During the half-cycle shown, the liquid bulge moves
from left to right (as indicated by the arrow) with a small wave
ahead of it. Behind the advancing bulge, the film thickness (the
region between the curve and the wall) decreases monotonically.
At this bulge speed, the trailing film is thicker than the precursor
film, and so the bulge volume diminishes as shown by an increasing
minimum core radius Rmin form = 1, 2 and 3 (see Figure 9). Then
during the turn-around process the magnitude of the shear stress is
at its smallest and cannot prevent the growth of the surface-tension
driven instability. At this point the bulge grows. However, as the
core flow speeds up it again creates a thicker trailing film than pre-
cursor film, and the bulge diminishes. With the appropriate tuning
of the frequency, the system can thus be stable.

Figure 8: Shape of the air-liquid interface at different times during
half a period of oscillation, t∗=(a/Ucap) (t0+mπ/ (4Ω)) where Ω is a
dimensionaless frequency parameter.
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Figure 9: Stabilizing effect of the oscillatory core flow on the minimum
core radius, Rmin versus time.

Concluding Remarks

The model presented in the previous section has some serious
drawbacks. First, the airway was modeled as a rigid cylindrical
tube. Including realistic airway wall mechanics is important when
considering certain pulmonary diseases. Asthma, for example, is a
problem of bronchoconstriction due to active smooth muscle, while
emphysema is caused by weakened parenchymal tethering forces.
A more realistic mathematical model has to include airway wall
compliance and tethering forces. Three-dimensional disturbances
need to be considered because airways can buckle if the pressure
difference across the airway wall is sufficiently large. Hazel and Heil
[16] have a three-dimensional model of airway closure in which an
elastic tube may buckle. Their model shows that the critical film
thickness required for closure in a buckled tube can be much smaller
than a rigid tube with a circular cross-section.
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Also, the surface tension was assumed to be constant in the
previous section. It is well known that surfactant is present, and
can have a stabilizing effect for the case of a passive core [12, 13,
15].

The fluid characteristics of the liquid film lining the airways
were also simplified above by assuming that it consisted of a sin-
gle liquid layer of constant viscosity. In fact, the liquid coating
airways consists of a mucus-serous bilayer. The mucus exhibits
viscoelastic and non-Newtonian properties, while the serous com-
ponent is a Newtonian (constant viscosity) fluid. In diseases such as
asthma and cystic fibrosis, the mucus has abnormal characteristics.
To model airway closure in such settings more realistic rheological
models need to be considered.

To conclude, more realistic mathematical models of airway clo-
sure need to include more accurate wall compliance characteristics,
surfactant effects, more accurate film rheology, as well as the effect
of the air-core phase described in the previous section.
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