Solutions and Discussions

Problem 7 - Volume 31, No. 1, Spring, 2007
Chose three digits a, b, c such that $9 \geq a>b>c \geq 1$. Compute the difference $a b c-c b a$, and call the result $x y z$. Prove that the sum of $x y z$ and $z y x$ is always 1089 .

Solution

Kimberly Eichenlaub Lowrey, Junior, Troy University, Troy, AL.

We will solve a more general problem. Specifically, we will assume that A, B, C are digits in base n, where $n>2$, and $(n-1) \geq$ $A>B>C \geq 0$. Forming the three-digit numbers $A B C$ and $C B A$ (in base n), and letting x, y, z be digits in base n such that the three-digit, base n number $x y z$ is the difference of $A B C$ and $C B A$,

$$
\text { i.e., } \begin{array}{ccc}
A & B & C \\
- & C & A \\
\hline & y & y
\end{array},
$$

we will show that

$$
\begin{array}{cccc}
& x & y & z \\
+ & z & y & x \\
\hline 1 & 0 & (n-2) & (n-1)
\end{array} .
$$

Since we perform the operation of subtraction from right to left, we will determine the value of z, then y, and then x.
$z=C-A$ Note that $A>C$. When subtracting a larger digit from a smaller digit, we "borrow" from the digit to the left (B), turning the number $A B C$ into $A(B-1)(n+C)$, by slight abuse of place value notation. Thus,

$$
z=n+C-A
$$

$y=(B-1)-B$ Again, we "borrow" from A, turning $A B C$ into
$(A-1)(n+B-1)(n+C)$. Thus,

$$
y=(n+B-1)-B=n-1
$$

$$
\text { i.e., } y=n-1 \text {. }
$$

This leaves

$$
x=A-1+C .
$$

Thus, we have:

$$
x y z=\underbrace{(A-1+C)}_{x} \underbrace{(n-1)}_{y} \underbrace{(n+C-A)}_{z} .
$$

Note: $\quad x y z \quad x \cdot n^{2}+y \cdot n^{1}+z \cdot n^{0}$.

$$
\text { Also Note: } \quad z y x=z \cdot n^{2}+y \cdot n^{1}+x \cdot n^{0} \text {. }
$$

Observe:

$$
\begin{aligned}
x y z+z y x & =(x+z) \cdot n^{2}+(2 y) \cdot n^{1}+(x+z) \cdot n^{0} \\
& =(n-1) \cdot n^{2}+(2 n-2) \cdot n^{1}+(n-1) \cdot n^{0} \\
& =n \cdot n^{2}+(n-2) \cdot n^{1}+(n-1) \cdot n^{0} \\
& =1 \cdot n^{3}+0 \cdot n^{2}+(n-2) \cdot n^{1}+(n-1) \cdot n^{0} \\
& \begin{array}{rccc}
x & y & z \\
\text { i.e., } \quad+\quad z & y & x \\
\hline & 0 & (n-2) & (n-1)
\end{array}
\end{aligned}
$$

ACTM Fall Forum 2008

Multi-Media Mathematics

October 23-24
Auburn University at Montgomery
Thursday, October 23 - Featured Sessions Start at 1 pm (Registration Begins at 12)

- K-2 and 3-5 Grade Bands: (Elmo, The Daily Five X 2, Patterns in Children's Music, Children's Literature, APT+, Activities to Teach Higher-Order Thinking, Wikispaces)
- 6-8 and 9-12 Grade Bands: (Wikispaces, Graphing Calculators and Robotics, NCTM Illuminations, IPOD, Web-based Interactive Software, The Mathematics of Gaming, SmartView, Airliner, Using the Document Camera in the Classroom, Gelboards, Paper Plate Possibilities

Friday, October 24 - Starts at 8 am (Registration Begins at 7:30)
Extended 90 minute hands-on sessions for each grade band and 60 minute informative sessions for each grade band on various topics that affect teaching mathematics

Some of the Session Titles Include:

- Model the Ferris Wheel Problem for the IMP Unit High Dive (10-12)
- Patterns! Patterns! Patterns! (K-8)
- Writing in the Mathematics Inclusion Classroom (5-8)
- "Smart" Strategies for SMART Board (9-12)
- Video Games and Mathematics (5-12)
- Graphing Calculator Robotics (6-8)
- Simpson's Rule from the Numbers (12)
- Reading, Rocking, and Arithmetic (K-2)
- Seeing is Believing - Visualize Precalculus and Calculus with Technology (12)
- Picture This! Digital Cameras in the Mathematics Classroom (7-12)
- WebQuests - Internet Scavenger Hunt (9-12)
- Digging Into the Prime Number Theory Using Technology (10-12)
- Connecting Probability and Games of Cultures from Around the World (6-8)
- $31 / 3$ Buses Needed for the Field Trip. . . Is This a Reasonable Answer? (3-5)

For more information go to http://www.alabamamath.org

ACTM Fall Forum 2008

Multi-Media Mathematics

October 23-24
Auburn University at Montgomery
Thursday, October 23 - Featured Sessions Start at 1 pm (Registration Begins at 12)

- K-2 and 3-5 Grade Bands: (Elmo, The Daily Five X 2, Patterns in Children's Music, Children's Literature, APT+, Activities to Teach Higher-Order Thinking, Wikispaces)
- 6-8 and 9-12 Grade Bands: (Wikispaces, Graphing Calculators and Robotics, NCTM Illuminations, IPOD, Web-based Interactive Software, The Mathematics of Gaming, SmartView, Airliner, Using the Document Camera in the Classroom, Gelboards, Paper Plate Possibilities

Friday, October 24 - Starts at 8 am (Registration Begins at 7:30)
Extended 90 minute hands-on sessions for each grade band and 60 minute informative sessions for each grade band on various topics that affect teaching mathematics

Some of the Session Titles Include:

- Model the Ferris Wheel Problem for the IMP Unit High Dive (10-12)
- Patterns! Patterns! Patterns! (K-8)
- Writing in the Mathematics Inclusion Classroom (5-8)
- "Smart" Strategies for SMART Board (9-12)
- Video Games and Mathematics (5-12)
- Graphing Calculator Robotics (6-8)
- Simpson's Rule from the Numbers (12)
- Reading, Rocking, and Arithmetic (K-2)
- Seeing is Believing - Visualize Precalculus and Calculus with Technology (12)
- Picture This! Digital Cameras in the Mathematics Classroom (7-12)
- WebQuests - Internet Scavenger Hunt (9-12)
- Digging Into the Prime Number Theory Using Technology (10-12)
- Connecting Probability and Games of Cultures from Around the World (6-8)
- $31 / 3$ Buses Needed for the Field Trip. . . Is This a Reasonable Answer? (3-5)

For more information go to http://www.alabamamath.org

