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Abstract. When the exact solution of a differential equa-
tion is impossible to find, the study of its direction field
can provide valuable information. This article reviews the
method and shows how it is applied to find the terminal
velocities of falling objects subject to air resistance. Two
different cases are discussed: air resistance proportional to
the velocity and air resistance proportional to the velocity
squared.

Consider a falling object, subject to air resistance, which is
allowed to fall for a distance of infinite length and assume that the
air resistance is proportional to either the velocity or the velocity
squared. The differential equation that models the movement of the
object is easily established by Newton’s Second Law. Since the air
resistance increases with velocity, the velocity of the falling object
will not increase without bound. So what is the velocity as time
approaches infinity? The standard way of obtaining the answer
is to solve the differential equation, obtain an exact solution of
the velocity in terms of the time, and then compute the limit as
t → ∞. There is an alternative approach: analyzing the direction
field of the corresponding differential equation. Without solving the
equation, information about the solution of a differential equation
can often be readily obtained by studying its direction field. Even
when the classical methods of solving differential equations can not
be used to obtain an exact solution, the analysis of the direction
field can still provide valuable information about the solution of the
the equation. It is the purpose of this article to review the method
of direction fields by illustrating its application to the problem
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of finding the terminal velocity of a falling object subject to air
resistance.

Let us first recall a result regarding the existence and unique-
ness of the solution of initial-value problems of the form

(1.a)
dy

dx
= g (x, y)

(1.b) y (x0) = y0,

as this result will be used on two separate occasions in our discus-
sion. If there is a rectangle R, containing the point (x0, y0) in the
xy-plane, over which g and ∂g

∂y are continuous, then there exists an
interval I0 containing x0 and a unique function y(x), defined on I0,
that is a solution of the initial-value problem.

It can be seen from eq. 1.a that the value of g at any point
(x, y) in the xy-plane is equal to the slope of the tangent line of
the solution curve y (x) and hence determines the direction of y (x)
at that point. Knowledge of the directions of the solution curves
is useful, especially when exact solutions are not available, because
it allows us to trace the solution curves by following the directions
prescribed by the values of g. More can be said for special forms
of g. For our purpose, we now consider a special case of eq. 1.a
and eq. 1.b in which g(x, y) = f(y), that is, the directions of the
solution are only determined by values of y and not x. We also
assume that f and f 0 are continuous for −∞ < y < ∞. The
initial-value problem then takes the form

(2.a)
dy

dx
= f (y)

(2.b) y (x0) = y0.

Since f and f 0 are continuous for all values of y, given any initial
condition (x0, y0) , there exists a unique solution y(x) which passes
through the point (x0, y0). Now, for the sake of discussion, suppose
that f has two zeros c1 and c2 ( i.e., f (c1) = f (c2) = 0), with
c1 < c2. It is then apparent that y = c1 and y = c2 are two constant
solutions of eq. 2.a, which we will call the equilibrium solutions.
The lines y = c1 and y = c2 partition the xy-plane into three
subregions R1 = {(x, y) : y < c1} , R2 = {(x, y) : c1 < y < c2} , and
R3 = {(x, y) : y > c2} . Without solving the initial-value problem,
the following information can be concluded.

First, if (x0, y0) is in Ri (for i = 1, 2, 3), the solution y(x) to
eq. 2.a and eq. 2.b is confined to Ri for −∞ < x < ∞. Why?
Otherwise, y (x) intersects the boundary of Ri, let’s say that y (x)
is in R2 and intersects the boundary y = c1 at x = x1. Then the
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initial-value problem
dy

dx
= f (y)

y (x1) = c1

will have two different solutions: y (x) and the equilibrium solution
y = c1, violating the uniqueness of the solution to the problem.

Next, since dy
dx = f (y) does not change sign in Ri, the solution

y(x) is strictly monotonic. Finally, if y(x) is in Ri, then y(x) will
approach the boundary of Ri (the equilibrium solution(s)) as x→
∞ and/or as x → −∞. For example, if y(x) lies in R2 and is
increasing, then limx→−∞ y (x) = c1 and limx→∞ y (x) = c2. To see
that the second limit is true, first note that y (x) is increasing and
bounded above by y = c2. Therefore, limx→∞ y (x) = c ≤ c2 (i.e.,
y = c is a horizontal asymptote of y (x)). Hence, limx→∞ y0 (x) = 0.
Now on one hand, eq. 2.a implies that

lim
x→∞ f (y (x)) = lim

x→∞ y
0 (x) = 0.

On the other hand, by the property of limits of composite functions,

lim
x→∞ f (y (x)) = f

³
lim
x→∞ y (x)

´
= f (c) .

Therefore f (c) = 0, and then c = c2, by the continuity of f.
We are now ready to put the above analysis into use. In what

follows, the original position of the object is taken as the origin and
the positive direction is oriented downward. We study two cases.

1. Air Resistance Proportional to Velocity

By Newton’s Second Law, the modeling differential equation is

(3) m
dv

dt
= mg − kv,

where m denotes the the mass of the object, v velocity, t time, g
the gravitational acceleration and k the constant of proportionality.
The equation is subject to the initial condition v (0) = v0, where
v0 is the initial velocity. Dividing both sides of the equation by m
yields

(4)
dv

dt
= g − kv

m
.

Now setting the right hand side of eq. 4 equal to zero, we obtain
the equilibrium solution

v1 =
mg

k
The line v = v1 partitions tv-plane into two regions R1 =

{v < v1} and R2 = {v > v1} . From eq. 4 we see that if (0, v0)
lies in R2, dvdt < 0 and v decreases; whereas if (0, v0) lies in R1,
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dv
dt > 0 and v increases. Since the solution will eventually approach
the equilibrium solution, in both cases limt→∞ v (t) = v1. Finally
if v0 = v1, the equilibrium solution is obtained. (The physical
interpretation in this case is that, since the air resistance is equal
to the gravitational force, the total force equals zero and the object
will move with a constant speed.) In all three cases: (0, v0) ∈ R1;
(0, v0) ∈ R2; v0 = v1; the terminal velocity is mgk .

2. Air Resistance Proportional to Velocity Squared

Let us assume the initial velocity v0 > 0, i.e., the object moves
in the downward direction at t = 0. The modeling differential equa-
tion now becomes:

(5) m
dv

dt
= mg − kv2,

which is equivalent to

(6)
dv

dt
= g − kv

2

m
.

(Note that k > 0.)
In this case, the equilibrium solutions are v1 = −

p
mg
k , v2 =p

mg
k and the tv-plane is now partitioned into three regions: R1 =

{v < v1} , R2 = {v1 < v < v2} , and R3 = {v > v2} . We are only
interested in R3 and the part of R2 that lies above the t-axis, since
eq. 5 can only be used as a model equation of the falling process
(the last term in the equation needs a sign change if the object
moves up initially.) If (0, v0) lies in R3, dvdt < 0, and v decreases;
if (0, v0) lies above the t-axis in R2, dvdt > 0, and v increases. In
both cases, limt→∞ v (t) = v2. Finally if v0 = v2, we again obtain
the equilibrium solution. Hence the terminal velocity in this case
is
p

mg
k .
If v0 < 0, i.e., the object moves up at t = 0, the air resis-

tance will be oriented in the positive direction and the differential
equation for the rising process becomes

m
dv

dt
= mg + kv2,

(Again note that k > 0) which is different from eq. 5. Will the
terminal velocity be different? Not really. Due to the positive
acceleration caused by mg + kv2, the velocity will increase to zero
(when the object reaches the highest point) and then eq. 5 will
apply and govern the falling process as soon as v is positive.

The exact solutions of eq. 3 and eq. 5 can be obtained by us-
ing the standard techniques of solving first-order linear differential
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equations and are included here for reference (It can be seen that
the same terminal velocities are obtained by letting t→∞) :

v =
mg

k
+
³
v0 − mg

k

´
e−

kt
m

for eq. 3 and

v =

r
mg

k
tanh

Ãr
kg

m
t+ tanh−1

s
k

mg
v0

!
for eq. 5. On the other hand, we see that such solutions are not
necessary for our purpose, and, in general, the method of direction
fields can provide us with useful information even in circumstances
in which the exact solutions are impossible to find!
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