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Abstract: We find all continuous functions f : R→ R that
satisfy the condition f (x+ y) + f (x− y) = kf (x) f (y) for
all (x, y) ∈ R2, where k is a nonzero real number.

Introduction

Taking a careful look at the sum and difference formulas for
the cosine function:

cos(x+ y) = cos (x) cos (y)− sin (x) sin (y) , and
cos(x− y) = cos (x) cos (y) + sin (x) sin y,

we can add them and get the equation:

cos(x+ y) + cos (x− y) = 2 cos (x) cos (y) .
Similarly, we can do the same thing with the hyperbolic cosine

function to get:

cosh (x+ y) + cosh (x− y) = 2 cosh (x) cosh (y) .
A natural question to ask is: “what continuous functions satisfy

the general equation:

(1) f (x+ y) + f (x− y) = kf (x) f (y) ,
for all (x, y) ∈ R2, where k is a nonzero real number?”

We will show that other than some trivial functions, the co-
sine and hyperbolic cosine functions are indeed the only ones that
satisfy that functional equation.

Main Results

Clearly f (x) ≡ 0 satisfies the equation. Consequently, we will
assume throughout that f (x) is not identically zero, that is, f (z) 6=
0 for some z ∈ R.

Lemma 1. If f satisfies (1), then f is even, and f (0) = 2
k .

Proof. By letting x = y = 0 in (1), we get 2f (0) = kf2 (0) ,
so f (0) (2− kf (0)) = 0, which shows that either f (0) = 0 or
f (0) = 2

k . Since, by hypothesis, f (z) 6= 0 for some z ∈ R, we can
choose x such that f (x) 6= 0 and let y = 0. Then (1) becomes
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2f (x) = kf (x) f (0) , which implies that f (0) 6= 0, and hence,
f (0) = 2

k .
Next, if we let y ∈ R and let x = 0, then (1) becomes f (y) +

f (−y) = kf (y) f (0) = 2f (y) . So f (−y) = f (y) , which shows
that f is even. ¤

Lemma 2. If f is continuous and satisfies (1), then f is infin-
itely differentiable.

Proof. Since f is not identically zero and is continuous, there
exists an interval [a, b] such that

R b
a
f (z) dz 6= 0. So R b

a
f (x+ y) +

f (x− y) dy = kf (x) R b
a
f (y) dy, and it follows that

f (x) =M
³R b

a
f (x+ y) dy +

R b
a
f (x− y) dy

´
where M = 1

k
R b
a
f(y)dy

is a constant. If we use the substitution,

u = x+y, we get
R b
a
f (x+ y) dy =

R x+b
x+a

f (u) du =
R −a−x
−b−x f (u) du,

since f is even. Similarly, using the substitution, u = x − y, we
have

R b
a
f (x− y) dy = R b−x

a−x f (u) du. Now we can write:

f (x) = M
³R b−x

a−x f (u) du+
R−a−x
−b−x f (u) du

´
= M

³R 0
a−x f (u) du+

R b−x
0

f (u) du

+
R 0
−b−x f (u) du+

R−a−x
0

f (u) du
´

= M
³
− R a−x

0
f (u) du+

R b−x
0

f (u) du

− R −b−x
0

f (u) du+
R −a−x
0

f (u) du
´

So f 0 (x) exists, is continuous, and is equal to f (−b− x) −
f (−a− x) by the Fundamental Theorem of Calculus. Since f 0 (x)
exists and is defined in terms of f, it follows that f is not only
continuously differentiable, but is also infinitely differentiable. ¤

Lemma 3. If f is continuous and satisfies (1), then f 00 (x) =
λf (x) for some constant λ.

Proof. Proof: Differentiating (1) with respect to x twice, we
get

f 00 (x+ y) + f 00 (x− y) = kf 00 (x) f (y) ,
and differentiating (1) with respect to y twice, we get

f 00 (x+ y) + f 00 (x− y) = kf (x) f 00 (y) .
It follows that f 00 (x) f (y) = f (x) f 00 (y) . Let z be such that

f (z) 6= 0, and substitute z for y in the above equation. This yields
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f 00 (x) = f 00(z)
f(z) f (x) , which shows that f

00 (x) = λf (x) for some
constant λ. ¤

Theorem 1. The only continuous solutions to (1) are f (x) =
0, f (x) = 2

k , f (x) =
2
k cos (ωx) , and f (x) =

2
k cosh (ωx) .

Proof. The solutions to the differential equation in Lemma 3
are well known to be:

f (x) = mx+ b, (m, b) ∈ R2, if λ = 0,

f (x) = A cos (ωx) +B sin (ωx) , (A,B) ∈ R2,

ω2 = −λ, ω > 0 if λ < 0, and
f (x) = A cosh (ωx) +B sinh (ωx) , (A,B) ∈ R2,

ω2 = λ,ω > 0 if λ > 0.

Since f is even and satisfies the the condition f (0) = 2
k , the

only possible solutions are f (x) = 0, f (x) = 2
k , f (x) =

2
k cos (ωx) ,

and f (x) = 2
k cosh (ωx) , which finishes the proof. ¤
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