## Undergraduate Research

On the Functional Equation

f(x+y) + f(x-y) = kf(x) f(y)

BY KETURAH LAKENA MOORE and HUSSAIN Elalaoui-Talibi

**Biographical Sketch** 



Keturah LaKena Moore, is the daughter of Mr. and Mrs. William L. Moore of Huntsville, AL, and a 1999 graduate of J.O. Johnson High School in Huntsville, Alabama. Currently a senior at Tuskegee University, she will be receiving a B.A. in Mathematics in May 2005. Keturah's immediate plans include teaching mathematics at the high school level, while pursuing a masters degree. Her long term goal is to open a magnet school with a focus on Science and Mathematics. She is an active volunteer for *The Tuskegee Institute National Park Service*, and in 2004 she held the position



of the first *Rock-the-Vote* coordinator in the state of Alabama. Keturah also received an honorary award from *The National Dean's List* in Spring of 2004. This paper was written under the direction and supervision of Dr. Hussain Talibi, her senior seminar advisor at Tuskegee University.

ABSTRACT: We find all continuous functions  $f : \mathbf{R} \to \mathbf{R}$  that satisfy the condition f(x+y) + f(x-y) = kf(x)f(y) for all  $(x, y) \in \mathbf{R}^2$ , where k is a nonzero real number.

## Introduction

Taking a careful look at the sum and difference formulas for the cosine function:

$$\cos(x+y) = \cos(x)\cos(y) - \sin(x)\sin(y), \text{ and}$$

 $\cos(x-y) = \cos(x)\cos(y) + \sin(x)\sin y,$ 

we can add them and get the equation:

$$\cos(x+y) + \cos(x-y) = 2\cos(x)\cos(y).$$

Similarly, we can do the same thing with the hyperbolic cosine function to get:

 $\cosh(x+y) + \cosh(x-y) = 2\cosh(x)\cosh(y).$ 

A natural question to ask is: "what continuous functions satisfy the general equation:

(1) 
$$f(x+y) + f(x-y) = kf(x) f(y),$$

for all  $(x, y) \in \mathbf{R}^2$ , where k is a nonzero real number?"

We will show that other than some trivial functions, the cosine and hyperbolic cosine functions are indeed the only ones that satisfy that functional equation.

## Main Results

Clearly  $f(x) \equiv 0$  satisfies the equation. Consequently, we will assume throughout that f(x) is not identically zero, that is,  $f(z) \neq 0$  for some  $z \in \mathbf{R}$ .

LEMMA 1. If f satisfies (1), then f is even, and  $f(0) = \frac{2}{k}$ .

PROOF. By letting x = y = 0 in (1), we get  $2f(0) = kf^2(0)$ , so f(0)(2 - kf(0)) = 0, which shows that either f(0) = 0 or  $f(0) = \frac{2}{k}$ . Since, by hypothesis,  $f(z) \neq 0$  for some  $z \in \mathbf{R}$ , we can choose x such that  $f(x) \neq 0$  and let y = 0. Then (1) becomes 2f(x) = kf(x)f(0), which implies that  $f(0) \neq 0$ , and hence,  $f(0) = \frac{2}{k}$ .

Next, if we let  $y \in \mathbf{R}$  and let x = 0, then (1) becomes f(y) + f(-y) = kf(y)f(0) = 2f(y). So f(-y) = f(y), which shows that f is even.

LEMMA 2. If f is continuous and satisfies (1), then f is infinitely differentiable.

PROOF. Since f is not identically zero and is continuous, there exists an interval [a, b] such that  $\int_a^b f(z) dz \neq 0$ . So  $\int_a^b f(x+y) + f(x-y) dy = kf(x) \int_a^b f(y) dy$ , and it follows that

$$f(x) = M\left(\int_{a}^{b} f(x+y) \, dy + \int_{a}^{b} f(x-y) \, dy\right)$$

where  $M = \frac{1}{k \int_a^b f(y) dy}$  is a constant. If we use the substitution, u = x + y, we get  $\int_a^b f(x + y) dy = \int_{x+a}^{x+b} f(u) du = \int_{-b-x}^{-a-x} f(u) du$ , since f is even. Similarly, using the substitution, u = x - y, we have  $\int_a^b f(x - y) dy = \int_{a-x}^{b-x} f(u) du$ . Now we can write:

$$f(x) = M\left(\int_{a-x}^{b-x} f(u) \, du + \int_{-b-x}^{-a-x} f(u) \, du\right)$$
  
=  $M\left(\int_{a-x}^{0} f(u) \, du + \int_{0}^{b-x} f(u) \, du + \int_{-b-x}^{0} f(u) \, du + \int_{0}^{-a-x} f(u) \, du\right)$   
=  $M\left(-\int_{0}^{a-x} f(u) \, du + \int_{0}^{b-x} f(u) \, du - \int_{0}^{-b-x} f(u) \, du + \int_{0}^{-a-x} f(u) \, du\right)$ 

So f'(x) exists, is continuous, and is equal to f(-b-x) - f(-a-x) by the Fundamental Theorem of Calculus. Since f'(x) exists and is defined in terms of f, it follows that f is not only continuously differentiable, but is also infinitely differentiable.  $\Box$ 

LEMMA 3. If f is continuous and satisfies (1), then  $f''(x) = \lambda f(x)$  for some constant  $\lambda$ .

PROOF. Proof: Differentiating (1) with respect to x twice, we get

$$f''(x+y) + f''(x-y) = kf''(x) f(y)$$

and differentiating (1) with respect to y twice, we get

$$f''(x+y) + f''(x-y) = kf(x) f''(y).$$

It follows that f''(x) f(y) = f(x) f''(y). Let z be such that  $f(z) \neq 0$ , and substitute z for y in the above equation. This yields

 $f''(x) = \frac{f''(z)}{f(z)}f(x)$ , which shows that  $f''(x) = \lambda f(x)$  for some constant  $\lambda$ .

THEOREM 1. The only continuous solutions to (1) are f(x) = 0,  $f(x) = \frac{2}{k}$ ,  $f(x) = \frac{2}{k} \cos(\omega x)$ , and  $f(x) = \frac{2}{k} \cosh(\omega x)$ .

PROOF. The solutions to the differential equation in Lemma 3 are well known to be:

$$f(x) = mx + b, \quad (m, b) \in \mathbf{R}^2, \text{ if } \lambda = 0,$$
  
$$f(x) = A\cos(\omega x) + B\sin(\omega x), \quad (A, B) \in \mathbf{R}^2,$$
  
$$\omega^2 = -\lambda, \quad \omega > 0 \text{ if } \lambda < 0, \text{ and}$$
  
$$f(x) = A\cosh(\omega x) + B\sinh(\omega x), \quad (A, B) \in \mathbf{R}^2,$$
  
$$\omega^2 = \lambda, \omega > 0 \text{ if } \lambda > 0.$$

Since f is even and satisfies the the condition  $f(0) = \frac{2}{k}$ , the only possible solutions are f(x) = 0,  $f(x) = \frac{2}{k}$ ,  $f(x) = \frac{2}{k}\cos(\omega x)$ , and  $f(x) = \frac{2}{k}\cosh(\omega x)$ , which finishes the proof.

Drew Hall - 223 Department of Mathematics Tuskegee University Tuskegee, AL 36088 talibi@tuskegee.edu (334)-727-8212