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Abstract. Teachers are often searching for situations in
which correlation coefficients can be considered. Of partic-
ular interest is the case in which linear transformations are
applied to the variables whose correlation is being inves-
tigated. We will apply several such transformations to an
initial example.

All students who have studied statistical concepts are familiar
with the formula for correlation coefficients. If X and Y are two
paired variables, the correlation coefficient describing the strength
of the relationship between X and Y is:
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Y )rh
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P
(Y 2)− (PY )2
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Most students are aware that −1 ≤ r ≤ 1 and that if r is

“close” to either −1 or +1, the two variables are “strongly” linearly
related. If r is close to +1, the relationship is “direct” (large values
ofX are typically associated with large values of Y and small values
of X with small values of Y ); if r is close to −1, the relationship
is “inverse” (large X’s are typically associated with small Y ’s and
small X’s with large Y ’s). If the correlation coefficient is near zero,
there is a minimal linear relationship.

Data Table 1 contains pairs of test scores for five students.
The X value is the student’s score on test 1 and the Y value is
the student’s score on test 2. Using the data of this table, the
correlation coefficient can be computed.
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X Y X2 XY Y 2

3 7 9 21 49
5 8 25 40 64
6 10 36 60 100
8 12 64 96 144
10 10 100 100 100
32 47 234 317 457

Table 1

r =
(5) (317)− (32) (47)r³

(5) (234)− (32)2
´³
(5) (457)− (47)2

´ ≈ 0.77

The relatively high positive coefficient suggests a fairly strong
direct linear relationship between X and Y.

What happens if linear transformations are applied to each of
the variables? We will consider four sets of transformations.

(1) Suppose that a given constant is added to each X and
another given constant is added to each Y.What happens
to the coefficient of correlation? For instance, suppose
that 3 is added to each X entry of Table 1 and (−2) is
added to each Y entry of Table 1. Table 2 reports these
results.

X Y X2 XY Y 2

6 5 36 30 25
8 6 64 48 36
9 8 81 72 64
11 10 121 110 100
13 8 169 104 64
47 37 471 364 289

Table 2

r =
(5) (364)− (47) (37)r³

(5) (471)− (47)2
´³
(5) (289)− (37)2

´ ≈ 0.77

The coefficient is unchanged by these linear trans-
formations.
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2. Suppose that each X (from Table 1) is multiplied by a
given constant and each Y is multiplied by another given
constant. What happens to the coefficient? For example,
suppose that each X entry of Table 1 is multiplied by 3
and that each Y entry is multiplied by 1

2 . Table 3 displays
this situation.

X Y X2 XY Y 2

9 3.5 81 31.5 12.25
15 4 225 60 16
18 5 324 90 25
24 6 576 144 36
30 5 900 150 25
96 23.5 2106 475.5 114.25

Table 3

r =
(5) (475.5)− (96) (23.5)r³

(5) (2106)− (96)2
´³
(5) (114.25)− (23.5)2

´ ≈ 0.77

Again, the coefficient is unaffected by these linear trans-
formations.

3. Based upon the results of 1 and 2, it may be predicted
that successive applications of multiplication and addi-
tion transformations to the data of Table 1 will leave the
correlation coefficient invariant. Let us test this hypothe-
ses with X → 1

2X − 3 and Y → 3Y + 4. The results are
shown in Table 4.

X Y X2 XY Y 2

-1.5 25 2.25 -37.5 625
-0.5 28 0.25 -14 784
0 34 0 0 1156
1 40 1 40 1600
2 34 4 68 1156
1 161 7.5 56.5 5321

Table 4
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r =
(5) (56.5)− (1) (161)r³

(5) (7.5)− (1)2
´³
(5) (5321)− (161)2

´ ≈ 0.77

Again, the coefficient is unchanged!

4. What happens if the multiplicative factor of one of the
variables is negative: X → 2X − 3 and Y → −3Y + 4.
Table 5 reports the situation:

X Y X2 XY Y 2

3 -17 9 -51 289
7 -20 49 -140 400
9 -26 81 -234 676
13 -32 169 -416 1024
17 -26 289 -442 676
49 -121 597 -1283 3065

Table 5

r =
(5) (−1283)− (49) (−121)r³

(5) (597)− (49)2
´³
(5) (3065)− (−121)2

´ ≈ −0.77

The correlation coefficient is unchanged in absolute value, but,
its sign is changed from that of the previous examples. A “direct”
relationship is changed into an “inverse” relationship when the or-
dering of the Y’s is essentially reversed by the negative factor.

In summary, the coefficient of correlation is impervious to
change in absolute value when linear transformations are applied;
but, the sign of the coefficient is reversed if one multiplication is
positive and one is negative.

Challenges:

(1) What happens to the correlation coefficient if a negative
multiplication is applied to both X and Y ?

(2) Verify these relationships symbolically if aX+b and cY +
d transformations are applied to X1,X2,X3, ...,Xn and
Yl1Y2, Y3, ..., Y n.
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(3) Investigate other relationships involving coefficients of cor-
relation.

(4) Investigate situations leading to a zero coefficient. Does
this always signify the absence of any relationship between
X and Y ?

Department of Mathematics
University of Northern Iowa
Cedar Falls, IA 50614-0506



14 Alabama Journal of Mathematics


