
Solutions and Discussions

Problem 1 – Volume 26, No. 1, Spring, 2002

Compute 101024mod23 without using a calculator or a com-
puter. [Hint: use repeated squaring.]

Solution
Jimmy Ma, Sophomore, Loveless Academic Magnet

High School, Montgomery, AL.

Our solution hinges on the following observation. Let N =
(23x+ y)n . Then the remainder of N when divided by 23 is the
same as the remainder of yn when divided by 23.

To see this, we expand N = (23x+ y)
n
using the binomial for-

mula:

N = (23x+ y)n = (23x)n + n (23x)n−1 y1 +
¡
n
2

¢
(23x)n−2 y2 + . . .

+n (23x) yn−1 + yn

Next, we express yn as yn = 23m + r, as delineated by the
division algorithm. Thus, we can write:

N = (23x+ y)
n
= (23x)

n
+ n (23x)

n−1
y1 +

¡
n
2

¢
(23x)

n−2
y2 + . . .

+n (23x) yn−1 + 23m+ r = 23k + r.

Using our observation, and applying it to 101024, we have:

101024 =
¡
102
¢512

= 100512 = (23 · 4 + 8)512 = 8512 (mod 23) .

But 8512 =
¡
82
¢256

= 64256 = (23 · 2 + 18)256 = 18256 (mod 23) .

And 18256 =
¡
182
¢128

= 324128 = (23 · 14 + 2)128 = 2128 (mod 23) .

Note that 2128 =
¡
28
¢16

= 25616 = (23 · 11 + 3)16 = 316 (mod23) .
[69]
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Also, 316 =
¡
34
¢4
= 814 = (23 · 3 + 12)4 = 124 (mod 23) .

But 124 =
¡
122
¢2
= 1442 = (23 · 6 + 6)2 = 62 (mod 23) .

Finally, 62 = 36 = (23 · 1 + 13) = 13 (mod 23) .
Thus, we have:101024 = 8512 (mod 23) = 18256 (mod 23) =

2128 (mod 23) = 316 (mod 23) = 124 (mod23) = 62 (mod 23) =

13 (mod23)

So 101024mod23 = 13

Also solved by Luay Abdel-Jaber, Auburn University at Mont-
gomery, Montgomery, AL.

Problem 2 – Volume 26, No. 1, Spring, 2002.

Suppose you have one large chocolate bar that consists of 24
small squares arranged in the shape of a 4-by-6 matrix. Determine
the minimum possible number of times you will need to break the
bar so that each of the 24 small squares is separated from all the
others. You may only break one bar at a time, and you may only
break each bar along a straight line. Also try to generalize your
answer by considering a chocolate bar that consists of xy small
squares arranged in the shape of an x-by-y matrix.

Solution
Nick Newman, Junior, Troy State University, Troy,

AL.

Given an x×y matrixA, let n = xy (i.e., A has n elements)..The
rules of the problem allow for breaks along a joint between rows or
a joint between columns.

Claim 1. If matrix A consists of n elements, then there exist
exactly n− 1 breaks. In other words, if B (n) denotes the number
of breaks required to completely break up the candy bar matrix, then
B (n) = n− 1.

Proof. We prove this by induction on n. Our induction hy-
pothesis,P (n) , is the proposition that B (n) = n − 1. For cases
n = 1, 2, our claim is obviously true. If n = 1, then there are no
breaks possible, and B (1) = 1 − 1 = 0. If n = 2, then there is
exactly one break possible, and B (2) = 2− 1 = 1.

Next, for the induction step, assume that P (k) is true for
k ∈ S = {1, 2, . . . n− 1}. We show that P (k) also holds for k = n.
Since our proposition P (n) is true for n = 2, we assume, without
loss of generality, that there are at least two rows (The proof for
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the case in which there are at least two columns is identical). By
arbitrarily making our first break after the dth row, we create two
new, smaller matrices of sizes (x− d)×y and d×y. Since (x− d)·y ∈
S = {1, 2, . . . n− 1} , and d·y ∈ S = {1, 2, . . . n− 1} , it follows that
P ((x− d) y) = (x− d) y − 1, and P (dy) = dy − 1. Adding these
together, and taking into our consideration our initial break, we
get:

P ((x− d) y) + P (dy) + 1 = [(x− d) y − 1] + [dy − 1] + 1 = xy − 1
Thus, the proposition, B (n) = n− 1 holds for all n ∈ N. ¤
This shows that the number of breaks is independent of the

way that the bar is broken. If n = 4 · 6 = 24, then the minimum
number of breaks is 24− 1 = 23. Furthermore, if n = xy, then the
minimum number of breaks is xy − 1.
Problem 4 – Volume 26, No. 1, Spring, 2002.

Evaluate each of the following limits. [Note: you can grind
through the messy details, or you can apply general concepts to
solve these in your head.]

(1) (a) limn→∞ n2−9999n−99999999
999999999+9999n+n2

(b) limn→∞ 2n

logn

(c) limn→∞ log3 n
22n

Solution
Luay Abdel-Jaber, Auburn University at Montgomery,

Montgomery, AL.

(1) (a) limn→∞ n2−9999n−99999999
999999999+9999n+n2

Since the terms of highest degree dominate the nu-
merator and denominator, as n → ∞, we can re-
place the terms of the numerator and denominator
by the terms of highest degree and let n→∞.Hence,
limn→∞ n2−9999n−99999999

999999999+9999n+n2 = limn→∞
n2

n2 = 1

(b) limn→∞ 2n

logn

Note that the numerator and the denominator are
differentiable, and that the quotient satisfies the hy-
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potheses of L’Hôpital’s Rule. Thus, by applying that
rule, we have:

lim
n→∞

2n

logn
= lim

n→∞
2n ln 2³
ln(10)
x

´ = lim
n→∞x2

x log (2) =∞

(c) limn→∞ log3 n
22n

To simplify our calculations, we shall prove that

limn→∞ logn

2
2n
3
= 0, from which it follows, by cub-

ing the original function, that limn→∞ log3 n
22n

= 0.

To prove the claim that limn→∞ logn

2
2n
3

= 0, we note

that the hypotheses of L’Hôpital’s Rule are satisfied.

Hence,

limn→∞ logn

2
2n
3

= limn→∞
( ln(10)n )

1
32

1
3
2n+n(ln 2)2

= limn→∞
3 ln(10)

n2
2n
3
+n(ln 2)2

= 0

Thus, the claim is proved, and it follows that

limn→∞ log3 n
22n

= 0.

Also solved by Sheena,Richards, Junior, Troy State Uni−
versity, Troy,AL.

Problem 5 – Volume 26, No. 1, Spring, 2002.

A simple game begins with 11 stones arranged in a single pile.
Two players take alternating turns. Each turn consists of selecting
any pile that contains at least 3 stones, and then splitting this pile
into two smaller piles. The only restriction is that, after each turn,
all the currently remaining piles must contain different numbers of
stones. The game ends when one of the players can make no legal
move, and this player is declared to be the loser. Assuming that
both players want to win the game, what should be the strategy of
the first player on his/her first turn?
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Solution
Sheena Richards, Sophomore, Troy State University,

Troy, AL

There are only two ways that eleven stones can be broken down
into smaller piles, leaving no possible moves. One of these yields
three final piles of size 1, 4, 6, and the other yields four piles of sizes
{1, 2, 3, 5} .

On his/her first move, Player 1 initially creates two piles. By
taking his/her first move, Player 2 creates three piles. Player 1
does not want Player 2 to have the opportunity to create piles of
sizes {1, 4, 6} . Piles of sizes {1, 4, 6} can only be created from the
two piles left by Player 1, in the following ways, shown below:

{5, 6}

{1, 4, 6}

{1, 10}

{1, 4, 6}

{4, 7}

{4, 1, 6}

Thus, the strategy of Player 1, on his/her first turn, will be
to avoid breaking the pile of eleven pebbles into two piles of sizes
{5, 6} , {1, 10} , {4, 7} . Player 1 can win – guaranteed, by breaking
the pile of eleven pebbles into two piles of sizes {5, 6} or {1, 10} .


