Problems

- **Problem 1.** Find the volume of a tetrahedron with corners at (0, 1, 2), (3, 5, 7), (4, 6, 9), and (8, 10, 11).
- Problem 2. Buildings A and B are separated by a 12 foot wide alley. One 15 foot ladder rests at the base of building A and leans against the wall of building B. Another 20 foot ladder rests at the base of building B and leans against the wall of building A. What is the height where the two ladders cross?
- **Problem 3.** A point is chosen at random from the interior of a circle of radius R. Determine the expected distance from the chosen point to the center of the circle.
- **Problem 4.** Determine the maximum possible value of $xy^2 + yz^2 + zx^2$ such that $x \ge 0, y \ge 0, z \ge 0$, and x + y + z = 1.
- **Problem 5.** Let C_1 , C_2 , and C_3 denote three circles with distinct radii whose interiors are pairwise disjoint. Let P_{ij} denote the point of intersection of the two external tangents of C_i and C_j . Prove that P_{12} , P_{13} , and P_{23} are collinear.
- **Problem 6.** Find three different right triangles with integer length sides such that each has an area of 840.
- **Problem 7.** Given that $F(x) = \tan(x)$, prove that the k^{th} derivative $F^{(k)}(0) \ge 0$ for every $k \ge 0$.
- Problem 8. Three pairwise externally tangent circles have radii 26, 52, and 78 respectively. Determine all possible values for
 - [67]

the radius of a fourth circle that is tangent to all three of these circles.

- Problem 9. A pair of ordinary dice is repeatedly tossed. Player A wins if the sum of the two dice is 12. Player B wins if a sum of 7 is obtained on two consecutive tosses. What is the probability that player A will win before player B?
- **Problem 10.** Let C_1 and C_2 denote circles whose diameters coincide with the legs of a right triangle, and let C_3 denote a circle whose diameter coincides with the hypotenuse. Determine the relationship between the area of the triangle and the areas of the crescents of C_1 and C_2 that lie outside C_3 .

Solutions, comments, and discussions should be sent to:

Ken Roblee	Vicky Eichelberg
Department of Math & Physics	Saint James School
232 MSCX	6010 Vaughn Road
Troy State University	Montgomery, AL 36116
Troy, AL 36082	(334)277-8033
(334)670-3406	FAX (334)277-8059
FAX (334)670-3796	eichelberg2@charter.net
kroblee@trovst.edu	