Parabolic Tangents: An Algebraic Analysis

By David R. Duncan and Bonnie H. Litwiller

Abstract

Teachers are always seeking interesting problem solving situations that employ a variety of mathematics content areas. We shall describe one such situation in which analytic geometry and calculus are both central to the solution of the problem.

The Problem

Given a circle and a point in its exterior, it is always possible to construct two tangents from the point to the circle. Given a parabola and a point in its exterior, how many tangents to the parabola through the given point can be constructed?

Figure 1 depicts a parabola $y=k x^{2}$ with $k>0$.

Figure 1

The exterior region is represented by $y<k x^{2}$; the interior region is represented by $y>k x^{2}$; and the set of points on the parabola is represented by $y=k x^{2}$.

Let $P(a, b)$ be a point not on the parabola and let $Q(c, d)$ be a point on the parabola, so that line $\overleftrightarrow{P Q}$ is tangent to the parabola, $y=k x^{2}$ at Q. See Figure 2.

Figure 2
The problem becomes thus: Given point $P(a, b)$, find, if possible, point $Q(c, d)$ so that line $\overleftrightarrow{P Q}$ is tangent to the parabola at Q. The slope of line $\overleftrightarrow{P Q}$ has two representations:
(1) By the definition of slope, $m=\frac{d-b}{c-a}$.
(2) By the calculus, the slope of the line through Q, tangent to the parabola, is the derivative of the function $y=k x^{2}$, evaluated at $x=c$. Since $y^{\prime}=2 k x$, the slope is $2 k c$. Thus $m=2 k c$.
This gives us $m=\frac{d-b}{c-a}=2 k c$. Since $Q(c, d)$ lies on the parabola, the equation $d=k c^{2}$ holds. Substituting into the previous equation, we have $\frac{k c^{2}-b}{c-a}=2 k c$.

$$
\text { This yields: } \begin{aligned}
& k c^{2}-b=2 k c(c-a) \\
\Rightarrow & k c^{2}-b=2 k c^{2}-2 k c a \\
\Rightarrow & 0=k c^{2}-(2 a k) c+b
\end{aligned}
$$

(Call this equation the Critical Equation.)
To evaluate whether this quadratic equation has solutions for c, evaluate its discriminant.

$$
\begin{aligned}
D & =(-2 a k)^{2}-4(k)(b) \\
& =4 a^{2} k^{2}-4 k b \\
& =4 k\left(k a^{2}-b\right)
\end{aligned}
$$

Two cases emerge:
(1) If $P(a, b)$ is in the interior of the parabola, then, by the inequality describing the interior, $b>k a^{2}$. Thus, we have $k a^{2}-b<0$ and $D<0$. There are no real solutions to the critical equation. Hence no tangents to the parabola pass through point P.
(2) If $P(a, b)$ is in the exterior of the parabola, then, by the inequality describing the exterior, $b<k a^{2}$. Thus, we have $k a^{2}-b>0$ and $D>0$. There are two solutions to the critical equation; therefore, two tangents to the parabola pass through point P.

Challenges to the Reader:

State and solve analogous problems for the ellipse and hyperbola.

Department of Mathematics University of Northern Iowa Cedar Falls, IA 50614-0506

