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ABSTRACT. This article describes a project for student in-
vestigation in abstract algebra. Through a process of exper-
imentation, conjecture and proof, students determine the
set of irreducible elements in the ring of integers modulo
n. This provides students with an opportunity to discover,
and prove for themselves, an interesting result that is not
available in abstract algebra texts.

1. Introduction

The concept of an irreducible element is one of the fundamental
ideas in abstract algebra. Informally, an element is irreducible if it
cannot be factored properly (a formal definition is given in the fol-
lowing section). Introductory textbooks on the subject often give
exercises such as “prove that 1+ 3v/=5 is irreducible in Z[/=5].”
In this note, we suggest a project in which students determine —
through a process of experimentation; and making, testing, refin-
ing, and proving conjectures — the set of irreducible elements in the
ring of integers modulo n. The pedagogical benefit of this project
is that students explore the “irreducible” concept in a setting in
which they will be able (with sufficient persistence) to draw their
own conclusions about the irreducible elements of the ring. Since
the answer to this question will not be found in their abstract alge-
bra textbook, it is hoped that students will thereby gain a sense of
discovery along with a deeper understanding of the “irreducible”
concept.
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2. Background Material

This section provides the pertinent definitions and may safely
be skipped by those readers familiar with factorization concepts.

Definition: Let R be a commutative ring with identity, 1. An
element u € R is called a unit of R if there exists some v € R such
that uv = 1. The set of all units of R is denoted U(R).

For example, the set of units of C[X], the polynomial ring over
the complex numbers, is the set of nonzero constant polynomials,
and the set of units of the ring of integers is U(Z) = {1, —1}.

The definition of “irreducible element” found in abstract alge-
bra textbooks is given in the context of integral domains. There-
fore, we must generalize the definition to the context of commu-
tative rings (possibly with nontrivial zero-divisors). The literature
contains substantial research in the area of factorization in rings
with zero-divisors (the references in [1] provide a useful overview).
This work shows that the familiar concept of an irreducible ele-
ment in an integral domain has three analogous but inequivalent
extensions to the setting of commutative rings with zero-divisors.
For this project, however, we restrict our attention to the following
definition.

Definition: Let R be a commutative ring with identity, 1. A
nonzero nonunit a of R is called an irreducible element of R if
a = bc with b, ¢ € R implies that either b or ¢ is a unit of R.

For example, the irreducible elements of C[X] are the linear
polynomials {a + 38X : a,8 € C and 3 # 0} and the irreducible
elements of Z are {£p : p is a prime integer}.

Two elements that differ only by a unit factor are not con-
sidered to be significantly different for factorization purposes. To
make this notion precise, we recall the following definition.

Definition: Let R be a commutative ring with identity and let
a,b € R. Then a and b are associates if a = bu for some unit u of
R.

“Being associates” is easily seen to impart an equivalence rela-
tion on the set of nonzero elements of a commutative ring R with
identity. Moreover, if ¢ and b are associates in R, then a is an
irreducible element of R if and only if b is an irreducible element
of R. Therefore, the equivalence relation induced by “being asso-
ciates” restricts to an equivalence relation on the set of irreducible
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elements of R. Thus, for any R, it makes sense to ask for a set
consisting of one element chosen from each of the corresponding
equivalence classes; we refer to such a set as a “set of associate
class representatives for the irreducible elements of R.” For exam-
ple, for the ring of integers, the most natural such set is the set
of all positive prime integers. As another example, the most nat-
ural choice for the polynomial ring C[X] is the set of monic linear
polynomials {a + X : a € C}.

A noteworthy consequence of this equivalence relation is the
fact a ring element with a reducible (that is, not irreducible) factor
must itself be reducible.

One final piece of terminology: for a nonzero nonunit a € R, a
factorization @ = bc in R is called a proper factorization if neither
b nor c¢ is a unit of R.

3. Project Description

This project asks students to determine a set of associate class
representatives for the irreducible elements of Z,, & Z/nZ, the ring
of integers modulo n. Prior to embarking on this project, students
have proved (either in class or in homework) that the group of units
of this ring is U(Z,) = {u € Z,, : n and any coset representative of
u are relatively prime integers}.

In directing the project, our goal is to intrude as little as pos-
sible on the students’ role as independent researchers. We suggest
that students make multiplication tables for Z,,, for n = 2,...,36
(most students use Microsoft Excel to do this), and then use these
tables to explictly find the irreducible elements in each of these
rings.

For example, in Zj,, the nonzero nonunits are 2, 3,4, 6, 8,9, 10.
It is easy to see from the multiplication table for Zio that 2 is ir-
reducible, since every possible factorization, 2 = (1)(2) = (2)(7) =
(5)(10) = (10)(11), reveals a unit factor. Similarly, 10 is shown to
be irreducible in Z2; but 3,4, 6, 8,9 are reducible in Z15, since each
has a proper factorization as a product of two nonunits: 3 = (3)(9),
1= (2)(2), 6 = (2)(3), 8 = (2)(4), 9 = (3)(3).

Part of the discovery process involves seeing past the forest of
data to the underlying concepts. For instance, we have noted that
{2,10} is the set of irreducible elements of Z5. However, it is easy
to see that 2 and 10 are associates in Zy3, since 2 = (10)(5) and
5 =571 € U(Z12). Based on the above work, we conclude that
{2} is a set of associate class representatives for the irreducible
elements of Z1s.

The following table lists associate class representatives for the
irreducible elements of Z,, for small n. The rings Z, (where p is
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prime) are not considered since they are fields and hence have no
irreducible elements.

n 4=2216=2-3[8=22]9=32[10=2-5
irreducibles 2 none 2 3 none

n 12=22.3|14=2-7[15=3-5]16=2%
irreducibles 2 none none 2

n 18=2-32]20=22.5]21=3-7[22=2-11
irreducibles 3 2 none none

n 24=23.3[25=52
irreducibles 2 5

Consider again our example of Zjs. Note that 2 is an irre-

ducible element of Z15, but 3 is not. Also note that more than one
factor of 2 appears in the prime factorization of 12 = 22-3, but only
one factor of 3 appears. After further experimentation, students
typically arrive at the following conjecture: if n = pi*p5* - - - pi* is a
prime-power factorization of n (with the p; pairwise distinct prime
integers), then the set {p; : e; > 2} is a set of associate class rep-
resentatives for the irreducible elements of Z,,. For completeness,
we include a proof of this result below.
Theorem: Let n = p;---psqi* ---q;* where the p;, ¢; are pair-
wise distinct prime integers and the exponents e; > 2 for all i.
Then {q1,...,q:} is a set of associate class representatives for the
irreducible elements of Z,,.

Proof: First, we show that each p; is reducible in Z,,. Without
loss of generality, ¢ = 1. Observe that p; is relatively prime to
DP2...Dsqit ... G5t = ;—Ll. Thus, there exist x,y € Z such that 1 =
P1T + P2...Dsq7 - .. g;'y. Multiplying both sides of this equation
by p1, we see that p; = pix + pipa...psqi .. ¢ty = piz + ny.
Thus, p1 = p?z = (p1)(p1x) (mod n), where neither p; nor pz is
a unit of Z, since neither p; nor p;x is relatively prime to n =
P1...Psq5t ... qit. Thus, p; is indeed reducible in Z,,.

Next, we show that each g; is irreducible in Z,,. Without loss of
generality, j = 1. Suppose that ¢; = ab (mod n) for some a,b € Z,.
Then a # 0. Moreover, in the ring of integers, ¢ = ab + nz for
some z € Z. Now, in Z, ¢ divides n, and hence ¢; must also
divide ab. Since q; is a prime integer, we may assume, without loss
of generality, that ¢; divides a. Thus, a = ¢1a’ for some o’ € Z.
Also, n = qin/, where n/ := ;—1 = pl...psqlelfquQ...qff. Since
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e1 > 2 by assumption, it follows that e; —1 > 1 and hence ¢; is
a factor of n/. Dividing both sides of g = ab + nz by g1, we see
that 1 = a’b + n'z. This shows that b and n/ are relatively prime
integers. Since n' = py...psq{* '¢5> ... qf", no p; or g; can divide
b. Thus b is also relatively prime to n, showing that b is a unit of
Z,,. Therefore, ¢, is irreducible in Z,, as asserted.

Next, we show that no elements of Z,, other than the ¢; and
their associates are irreducible. Let r be an arbitrary nonzero
nonunit of Z,,. Since r is not a unit, r and n cannot be rela-
tively prime integers. Thus, either some p; or some g; must divide
rin Z. If p; divides r, then r is reducible (since p; is reducible).
Thus, without loss of generality, some ¢; divides r. Then r = ¢;r’
for some 1" € Z, and hence r = g;r’ (mod n). If 7’ is a unit of Z,,
then r is an associate of ¢; in Z,,. In the remaining case, 1’ is a
nonunit of Z,, and r is reducible in Z,, since r = g;r’ is a proper
factorization of r into two nonunits of Z,,.

It remains only to verify that if ¢; and g, are associates in
Z,, then j = k. Suppose that ¢; = qxu in Z,,, with u € U(Z,).
Hence, g; — qru = zn for some z € Z, with u and n relatively prime
integers. As q; divides both giu and zn in Z, g, must also divide
gru + zn = ¢;. Then the Fundamental Theorem of Arithmetic
yields that g; = g, and so j = k, to complete the proof. [

4. Classroom Experience

We have used this project in an undergraduate course in ab-
stract algebra. Students completed the assignment by working in
groups outside of class over a two-week period. During this time,
students were also responsible for keeping up with other material
covered in class and in the textbook. At the end of the first week,
each group submitted an informal progress report to the instruc-
tor describing the conjectures they had generated. At the end of
the second week, students submitted a formal report proving their
results. Some groups identified the following corollary: if n > 2 is
a square-free integer, then Z,, is devoid of irreducible elements.

5. Extensions

Interested students may investigate the following questions:

(1) For which n > 2 is it true that each nonzero, nonunit
element of Z,, can be factored as a finite product of irre-
ducible elements?

(2) For which n > 2 can each nonzero, nonunit element of Z,
be factored as a finite product of irreducible elements in
an essentially unique way?

The first question is answered in [3] and the second in [2].
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Depending on the interests and abilities of the students, a va-
riety of additional related projects could be offered. For example,
students could determine the irreducible elements in other finite
commutative rings. Suitable rings may be constructed by taking
direct products of finitely many finite rings or considering R[X]/(f)
where R is a finite ring and f € R[X] with leading coefficient 1.
Additionally, students could investigate the alternate versions of
the “irreducible” concept given in the literature (see [1] for the
relevant definitions).
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