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Abstract. This article describes a project for student in-
vestigation in abstract algebra. Through a process of exper-
imentation, conjecture and proof, students determine the
set of irreducible elements in the ring of integers modulo
n. This provides students with an opportunity to discover,
and prove for themselves, an interesting result that is not
available in abstract algebra texts.

1. Introduction

The concept of an irreducible element is one of the fundamental
ideas in abstract algebra. Informally, an element is irreducible if it
cannot be factored properly (a formal definition is given in the fol-
lowing section). Introductory textbooks on the subject often give
exercises such as “prove that 1 + 3

√−5 is irreducible in Z[√−5].”
In this note, we suggest a project in which students determine –
through a process of experimentation; and making, testing, refin-
ing, and proving conjectures – the set of irreducible elements in the
ring of integers modulo n. The pedagogical benefit of this project
is that students explore the “irreducible” concept in a setting in
which they will be able (with sufficient persistence) to draw their
own conclusions about the irreducible elements of the ring. Since
the answer to this question will not be found in their abstract alge-
bra textbook, it is hoped that students will thereby gain a sense of
discovery along with a deeper understanding of the “irreducible”
concept.
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2. Background Material

This section provides the pertinent definitions and may safely
be skipped by those readers familiar with factorization concepts.

Definition: Let R be a commutative ring with identity, 1. An
element u ∈ R is called a unit of R if there exists some v ∈ R such
that uv = 1. The set of all units of R is denoted U(R).

For example, the set of units of C[X], the polynomial ring over
the complex numbers, is the set of nonzero constant polynomials,
and the set of units of the ring of integers is U(Z) = {1,−1}.

The definition of “irreducible element” found in abstract alge-
bra textbooks is given in the context of integral domains. There-
fore, we must generalize the definition to the context of commu-
tative rings (possibly with nontrivial zero-divisors). The literature
contains substantial research in the area of factorization in rings
with zero-divisors (the references in [1] provide a useful overview).
This work shows that the familiar concept of an irreducible ele-
ment in an integral domain has three analogous but inequivalent
extensions to the setting of commutative rings with zero-divisors.
For this project, however, we restrict our attention to the following
definition.

Definition: Let R be a commutative ring with identity, 1. A
nonzero nonunit a of R is called an irreducible element of R if
a = bc with b, c ∈ R implies that either b or c is a unit of R.

For example, the irreducible elements of C[X] are the linear
polynomials {α + βX : α,β ∈ C and β 6= 0} and the irreducible
elements of Z are {±p : p is a prime integer}.

Two elements that differ only by a unit factor are not con-
sidered to be significantly different for factorization purposes. To
make this notion precise, we recall the following definition.

Definition: Let R be a commutative ring with identity and let
a, b ∈ R. Then a and b are associates if a = bu for some unit u of
R.

“Being associates” is easily seen to impart an equivalence rela-
tion on the set of nonzero elements of a commutative ring R with
identity. Moreover, if a and b are associates in R, then a is an
irreducible element of R if and only if b is an irreducible element
of R. Therefore, the equivalence relation induced by “being asso-
ciates” restricts to an equivalence relation on the set of irreducible
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elements of R. Thus, for any R, it makes sense to ask for a set
consisting of one element chosen from each of the corresponding
equivalence classes; we refer to such a set as a “set of associate
class representatives for the irreducible elements of R.” For exam-
ple, for the ring of integers, the most natural such set is the set
of all positive prime integers. As another example, the most nat-
ural choice for the polynomial ring C[X] is the set of monic linear
polynomials {α+X : α ∈ C}.

A noteworthy consequence of this equivalence relation is the
fact a ring element with a reducible (that is, not irreducible) factor
must itself be reducible.

One final piece of terminology: for a nonzero nonunit a ∈ R, a
factorization a = bc in R is called a proper factorization if neither
b nor c is a unit of R.

3. Project Description

This project asks students to determine a set of associate class
representatives for the irreducible elements of Zn ∼= Z/nZ, the ring
of integers modulo n. Prior to embarking on this project, students
have proved (either in class or in homework) that the group of units
of this ring is U(Zn) = {u ∈ Zn : n and any coset representative of
u are relatively prime integers}.

In directing the project, our goal is to intrude as little as pos-
sible on the students’ role as independent researchers. We suggest
that students make multiplication tables for Zn, for n = 2, . . . , 36
(most students use Microsoft Excel to do this), and then use these
tables to explictly find the irreducible elements in each of these
rings.

For example, in Z12, the nonzero nonunits are 2, 3, 4, 6, 8, 9, 10.
It is easy to see from the multiplication table for Z12 that 2 is ir-
reducible, since every possible factorization, 2 = (1)(2) = (2)(7) =
(5)(10) = (10)(11), reveals a unit factor. Similarly, 10 is shown to
be irreducible in Z12; but 3, 4, 6, 8, 9 are reducible in Z12, since each
has a proper factorization as a product of two nonunits: 3 = (3)(9),
4 = (2)(2), 6 = (2)(3), 8 = (2)(4), 9 = (3)(3).

Part of the discovery process involves seeing past the forest of
data to the underlying concepts. For instance, we have noted that
{2, 10} is the set of irreducible elements of Z12. However, it is easy
to see that 2 and 10 are associates in Z12, since 2 = (10)(5) and
5 = 5−1 ∈ U(Z12). Based on the above work, we conclude that
{2} is a set of associate class representatives for the irreducible
elements of Z12.

The following table lists associate class representatives for the
irreducible elements of Zn for small n. The rings Zp (where p is
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prime) are not considered since they are fields and hence have no
irreducible elements.

n 4 = 22 6 = 2 · 3 8 = 23 9 = 32 10 = 2 · 5
irreducibles 2 none 2 3 none

n 12 = 22 · 3 14 = 2 · 7 15 = 3 · 5 16 = 24

irreducibles 2 none none 2

n 18 = 2 · 32 20 = 22 · 5 21 = 3 · 7 22 = 2 · 11
irreducibles 3 2 none none

n 24 = 23 · 3 25 = 52

irreducibles 2 5

Consider again our example of Z12. Note that 2 is an irre-
ducible element of Z12, but 3 is not. Also note that more than one
factor of 2 appears in the prime factorization of 12 = 22 ·3, but only
one factor of 3 appears. After further experimentation, students
typically arrive at the following conjecture: if n = pe11 p

e2
2 · · · pekk is a

prime-power factorization of n (with the pi pairwise distinct prime
integers), then the set {pi : ei ≥ 2} is a set of associate class rep-
resentatives for the irreducible elements of Zn. For completeness,
we include a proof of this result below.

Theorem: Let n = p1 · · · psqe11 · · · qett where the pi, qj are pair-
wise distinct prime integers and the exponents ei ≥ 2 for all i.
Then {q1, . . . , qt} is a set of associate class representatives for the
irreducible elements of Zn.

Proof: First, we show that each pi is reducible in Zn. Without
loss of generality, i = 1. Observe that p1 is relatively prime to
p2 . . . psq

e1
1 . . . q

et
t = n

p1
. Thus, there exist x, y ∈ Z such that 1 =

p1x + p2 . . . psq
e1
1 . . . q

et
t y. Multiplying both sides of this equation

by p1, we see that p1 = p21x + p1p2 . . . psq
e1
1 . . . q

et
t y = p21x + ny.

Thus, p1 ≡ p21x ≡ (p1)(p1x) (mod n), where neither p1 nor p1x is
a unit of Zn since neither p1 nor p1x is relatively prime to n =
p1 . . . psq

e1
1 . . . q

et
t . Thus, p1 is indeed reducible in Zn.

Next, we show that each qj is irreducible in Zn. Without loss of
generality, j = 1. Suppose that q1 ≡ ab (mod n) for some a, b ∈ Zn.
Then a 6= 0. Moreover, in the ring of integers, q1 = ab + nz for
some z ∈ Z. Now, in Z, q1 divides n, and hence q1 must also
divide ab. Since q1 is a prime integer, we may assume, without loss
of generality, that q1 divides a. Thus, a = q1a

0 for some a0 ∈ Z.
Also, n = q1n

0, where n0 := n
q1
= p1 . . . psq

e1−1
1 qe22 . . . q

et
t . Since
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e1 ≥ 2 by assumption, it follows that e1 − 1 ≥ 1 and hence q1 is
a factor of n0. Dividing both sides of q1 = ab + nz by q1, we see
that 1 = a0b + n0z. This shows that b and n0 are relatively prime
integers. Since n0 = p1 . . . psqe1−11 qe22 . . . q

et
t , no pi or qj can divide

b. Thus b is also relatively prime to n, showing that b is a unit of
Zn. Therefore, q1 is irreducible in Zn, as asserted.

Next, we show that no elements of Zn other than the qj and
their associates are irreducible. Let r be an arbitrary nonzero
nonunit of Zn. Since r is not a unit, r and n cannot be rela-
tively prime integers. Thus, either some pi or some qj must divide
r in Z. If pi divides r, then r is reducible (since pi is reducible).
Thus, without loss of generality, some qj divides r. Then r = qjr

0

for some r0 ∈ Z, and hence r ≡ qjr0 (mod n). If r0 is a unit of Zn,
then r is an associate of qj in Zn. In the remaining case, r

0 is a
nonunit of Zn, and r is reducible in Zn since r = qjr

0 is a proper
factorization of r into two nonunits of Zn.

It remains only to verify that if qj and qk are associates in
Zn, then j = k. Suppose that qj = qku in Zn, with u ∈ U(Zn).
Hence, qj−qku = zn for some z ∈ Z, with u and n relatively prime
integers. As qk divides both qku and zn in Z, qk must also divide
qku + zn = qj . Then the Fundamental Theorem of Arithmetic
yields that qj = qk, and so j = k, to complete the proof. ¤

4. Classroom Experience

We have used this project in an undergraduate course in ab-
stract algebra. Students completed the assignment by working in
groups outside of class over a two-week period. During this time,
students were also responsible for keeping up with other material
covered in class and in the textbook. At the end of the first week,
each group submitted an informal progress report to the instruc-
tor describing the conjectures they had generated. At the end of
the second week, students submitted a formal report proving their
results. Some groups identified the following corollary: if n ≥ 2 is
a square-free integer, then Zn is devoid of irreducible elements.

5. Extensions

Interested students may investigate the following questions:

(1) For which n ≥ 2 is it true that each nonzero, nonunit
element of Zn can be factored as a finite product of irre-
ducible elements?

(2) For which n ≥ 2 can each nonzero, nonunit element of Zn
be factored as a finite product of irreducible elements in
an essentially unique way?

The first question is answered in [3] and the second in [2].
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Depending on the interests and abilities of the students, a va-
riety of additional related projects could be offered. For example,
students could determine the irreducible elements in other finite
commutative rings. Suitable rings may be constructed by taking
direct products of finitely many finite rings or considering R[X]/(f)
where R is a finite ring and f ∈ R[X] with leading coefficient 1.
Additionally, students could investigate the alternate versions of
the “irreducible” concept given in the literature (see [1] for the
relevant definitions).
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